

The new antibiotic mantra: Shorter is better!

Prof Josh Davis

Infectious Diseases Physician, John Hunter Hospital, Newcastle

Professor, School of Medicine and Public Health, University of Newcastle

Antibiotic overuse drives AMR

- <u>Key driver of antibiotic overuse</u>: use in syndromes where they are not needed or are of minimal benefit
 - 48% of all Australians have >=1 course of Abs each year
 - URTIs (i.e. colds)
 - Bronchitis
 - (Sore throat/ AOM)
- 2nd most important: longer duration than needed

MEGA plate

https://www.youtube.com/watch?v=plVk4NVIUh8

Respect thy foe: evolution from the bacterial viewpoint

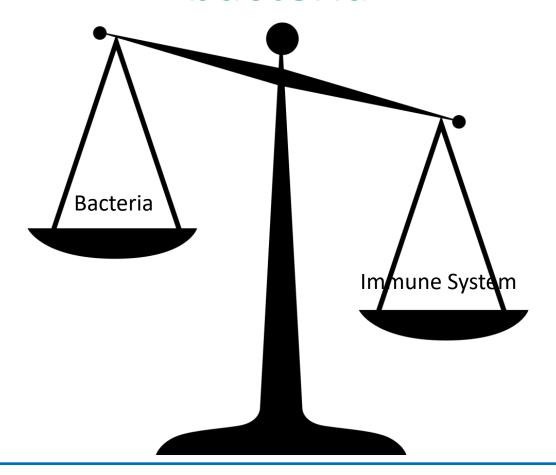
100 years = 1 second

Bacteria January 1st

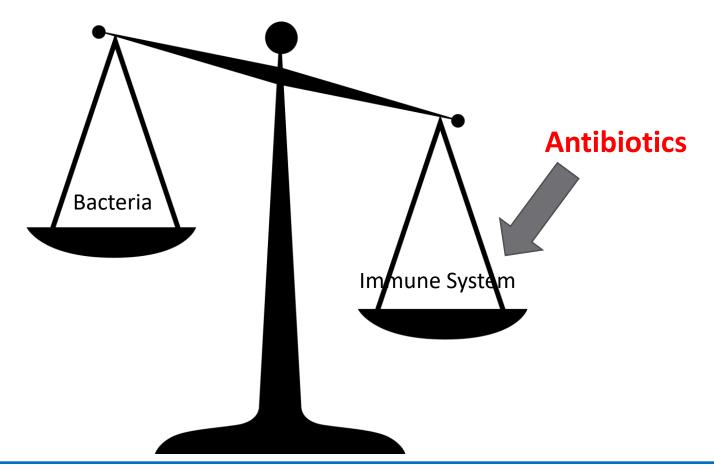
Fungi June 18th

Mammals December 24th

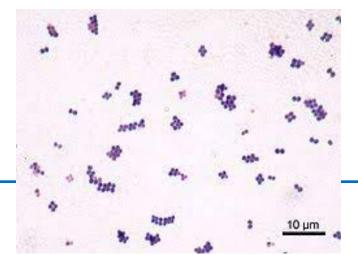
Humans 23:56hr, Dec 31st


Antibiotic era 23:59, last 0.5 second

90% of the cells in/on a human body are bacteria (and 10% are human)!!


Antibiotics help shift the balance rather than kill all bacteria

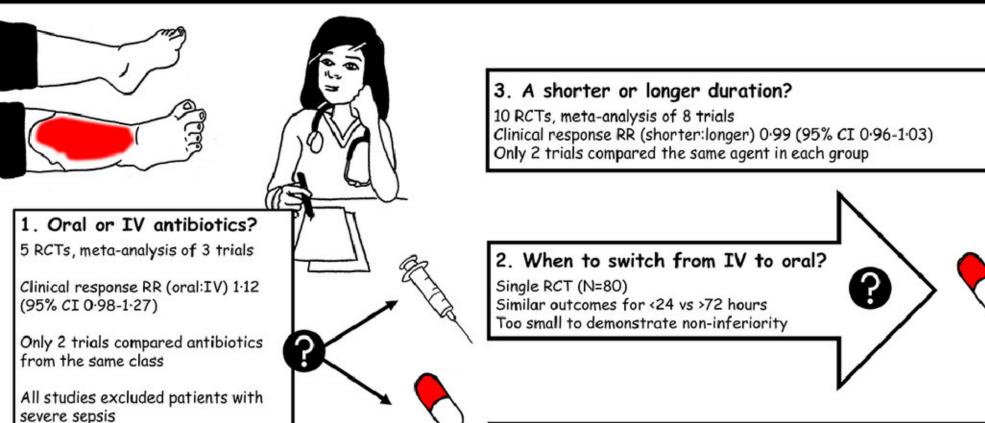
Antibiotics help shift the balance rather than kill all bacteria


Your mother was wrong!

- Finishing a prescribed course of antibiotics is not necessary
- Most prescriptions are longer than needed
- Ceasing as soon as symptoms improving ==completing whole course
- Longer courses=more exposure=more resistance
- The "antibiotic course" is dead!

- Complicated *S.aureus* bacteraemia
- Mild-moderate community acquired pneumonia
- Cellulitis
- Intra-abdominal infection post source control

- Complicated S.aureus bacteraemia
- Mild-moderate community acquired pneumonia
- Cellulitis
- Intra-abdominal infection post source control


	Short-co	urse	se Long-course		Risk Ratio			Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	Year	M-H, Fixed, 95% CI			
1.7.1 3-5 days vs. ≥7 days											
Kinasewitz 1991	1	25	2	35	10.8%	0.70 [0.07, 7.30]	1991				
O' Doherty 1998	1	24	1	22	6.8%	0.92 [0.06, 13.79]	1998	-			
Dunbar 2003	4	164	0	166	3.2%	9.11 [0.49, 167.85]	2003				
el Moussaoui 2006	1	50	3	56	18.4%	0.37 [0.04, 3.47]	2006	-			
Paris 2008	0	135	0	129		Not estimable	2008				
Zhao 2016	1	205	3	213	19.1%	0.35 [0.04, 3.30]	2016				
Subtotal (95% CI)		603		621	58.4%	0.97 [0.38, 2.45]					
Total events	8		9								
Heterogeneity: Chi² = 3.85, df = 4 (P = 0.43); l² = 0%											
Test for overall effect:	Z = 0.06 (F	P = 0.95)								
1.7.2 Single-dose azithromycin vs. ≥7 days											
Drehobl 2005	1	176	5	177	32.4%	0.20 [0.02, 1.70]	2005				
D'Ignazio 2005	0	164	1	182	9.2%	0.37 [0.02, 9.01]	2005	-			
Subtotal (95% CI)		340		359	41.6%	0.24 [0.04, 1.39]					
Total events	1		6								
Heterogeneity: Chi² = 0.10, df = 1 (P = 0.76); l² = 0%											
Test for overall effect:	Z = 1.59 (F	P = 0.11)								
Total (95% CI)		943		980	100.0%	0.67 [0.30, 1.46]					
Total events	9		15								
Heterogeneity: Chi² = 5.07, df = 6 (P = 0.53); l² = 0%							0.01 0.1 1 10 100				
							Favours short-course Favours long-course				
Test for subgroup differences: $Chi^2 = 1.91$, $df = 1$ ($P = 0.17$), $I^2 = 47.6\%$											
NEWCASTLE AUSTRALIA								HINRI Hunter Medical Research bestitutes			

- Complicated S.aureus bacteraemia
- Mild-moderate community acquired pneumonia
- Cellulitis
- Intra-abdominal infection post source control

Antibiotic decision making for acute cellulitis – 3 key decisions for clinicians

- Complicated S.aureus bacteraemia
- Mild-moderate community acquired pneumonia
- Cellulitis
- Intra-abdominal infection post source control

ORIGINAL ARTICLE

Trial of Short-Course Antimicrobial Therapy for Intraabdominal Infection

Table 2. Primary and Major Secondary Outcomes.*						
Variable	Control Group (N=260)	Experimental Group (N=257)	P Value			
Primary outcome: surgical-site infection, recurrent intraabdominal infection, or death — no. (%)	58 (22.3)	56 (21.8)	0.92			
Surgical-site infection	23 (8.8)	17 (6.6)	0.43			
Recurrent intraabdominal infection	36 (13.8)	40 (15.6)	0.67			

Subgroup	No. of Patients	Days of Antibiotic Therapy median (interquartile range)	Proportion with Composite Outcome		
Adhered to protocol					
Control	189	7 (5–10)	—		
Experimental	211	4 (4-5)	—		
Did a ll a l					

What about bacteraemia other than SAB?

- 7 days probably as good as 14 (3 small RCTs)
- BALANCE trial ongoing (n=3,600)
 - 7 vs 14 days for non-SAB bacteraemias
 - 1ry outcome=90 day mortality
 - Due to complete mid 2023

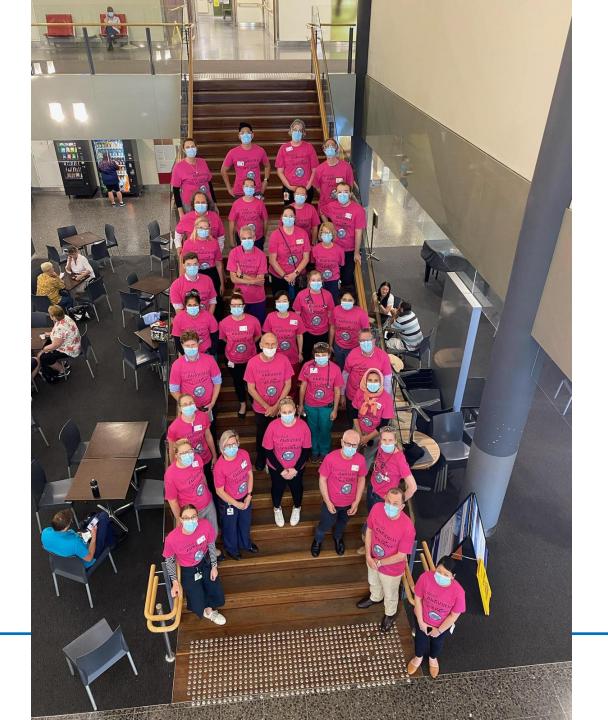
Australian data from 908 patients

Bacterial species	Number of patients	Median total duration of Rxin days (IQR)	%of Patients receiving 7 days or less	Healthcare setting
Enterobacter cloacae (E. cloacae risk factor study)	159	10 (2-40) days	21%	4 referral hospitals in QLD& NSW
E. coli (Monash Health E. coli cohort study)	566	14 (10-16) days	11%	5 hospitals in the Monash Health Network 2016 (Vic)
ESBLE. coli and Klebsiella spp. (MERINO RCT)	104	14 (10-17) days	9%	Australian + NZ patients in the MERINO study
All pathogens (PRO-GUARD Study)	79	13 (7-26) days	27%	11 Australian ICUs

Shorter Is Better

Diagnosis	Short (d)	Long (d)	Result	#RCT
CAP	3-5	5-14	Equal	14
Atypical CAP	1	3	Equal	1
Possible PNA in ICU	3	14-21	Equal	1*
VAP	8	15	Equal	2
cUTI/Pyelonephritis	5 or 7	10 or 14	Equal	9**
Intra-abd Infection	4	10	Equal	2
GNB Bacteremia	7	14	Equal	3†
Cellulitis/Wound/Abscess	5-6	10	Equal	4‡
Osteomyelitis	42	84	Equal	2
Osteo Removed Implant	28	42	Equal	1
Debrided Diabetic Osteo	10-21	42-90	Equal	2^{ϕ}
Septic Arthritis	14	28	Equal	1
AECB & Sinusitis	≤5	<u>≥</u> 7	Equal	>25
Neutropenic Fever	AFx72h/3 d	+ANC>500/9 d	Equal	2
Post Op Prophylaxis	0-1	1-5	Equal	55^{Ψ}
Erythema Migrans (Lyme)	7	14	Equal	1
P. vivax Malaria	7	14	Equal	1

Total: 17 Conditions


>120 RCTs

*Infiltrate on CXR but low CPIS score (≤6), both ventilated and non ventilated, likely CAP, HAP, and VAP combined;

**2 RCT included males, the smaller one found lower 10-18 d f/up cure in males with 7 days of therapy but no
difference at longer follow-up, larger exclusive male study found no diff in cure; ¹GNB bacteremia also in UTI/cIAI
RCTs; ¹3 RCTs equal, 1 (low dose oral flucox) ↑relapses 2° endpoint; �all patients debrided, in 1 study total bone
resection (clean margins); ⁴Includes meta-analysis of 52 RCTs; refs at https://www.bradspellberg.com/shorter-is-better

