

Top ID papers of 2024

NON-COVID!!

Prof Josh Davis, December 2024

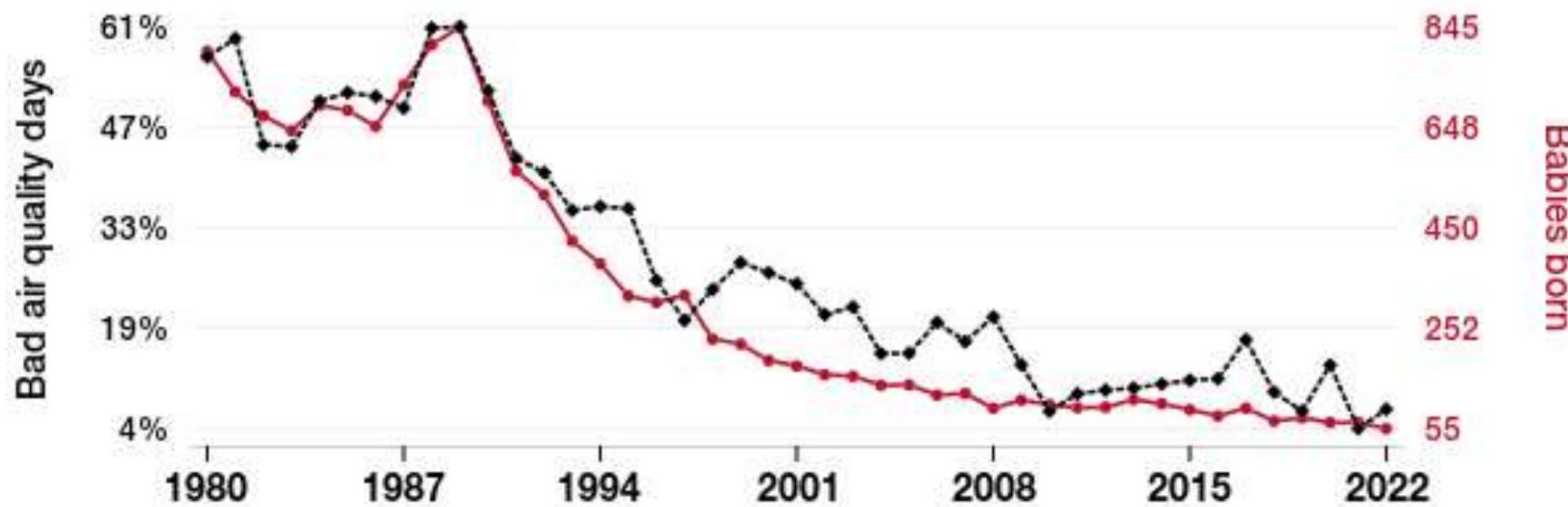
Criteria

- IMHO
- COVID excluded
- Published during 2024
- Deal with diagnosis or treatment of infectious diseases
- Relevant to (my) clinical practice
- Practice-changing, paradigm-shifting, or dogma-challenging.
- **In alphabetical order by first author**

X

Type I Error

Type II Error


**EVERY SINGLE PERSON
WHO CONFUSES
CORRELATION AND
CAUSATION ENDS UP
DYING**

Air pollution in San Diego, California

correlates with

Popularity of the first name Kirk

- Percentage of days with air quality at 'unhealthy for sensitive groups' or worse in San Diego-Carlsbad, CA · Source: Environmental Protection Agency
- Babies of all sexes born in the US named Kirk · Source: US Social Security Administration

1980-2022, $r=0.972$, $r^2=0.945$, $p<0.01$ · tylervigen.com/spurious/correlation/5949

Honorable Mentions

Hayward	<i>D-Mannose to prevent recurrent UTI in women</i>	JAMA Internal Medicine	In 303 women at 99 primary care centres in the UK, with recurrent UTIs, D-Mannose daily did not significantly decrease the risk of recurrent UTIs
Lopez-Cortes	<i>SIMPLIFY trial</i>	Lancet ID	RCT in 21 Spanish hospitals, where 344 with GN bacteraemia Rxd with an antipseudomonal beta-lactam were randomised to de-escalation or not; there was no difference in clinical cure or mortality
Okhuysen	<i>Ridinilazole vs Vancomycin for CDI</i>	CID	759 patients with CDI randomised to 10 days of Rid versus Vanco, Rid was non-inferior for clinical response but superior for relapse
Sie	<i>Azithromycin during routine well-infant visits to prevent death (CHAT)</i>	NEJM	Single dose of azithro at 5-12 weeks of age in 32,000 babies in Burkina Faso had no impact on mortality
Sprague	<i>PREP-IT trial</i>	NEJM	In 8485 adults with limb fractures, ETOH-iodine a bit better than ETOH-Chlorhex as skin prep for closed fractures but no difference for open
Wagenlehner	<i>Phase 3 RCT of ceftazidime for uncomplicated UTI (EAGLE)</i>	Lancet	New

Honorable mentions implications

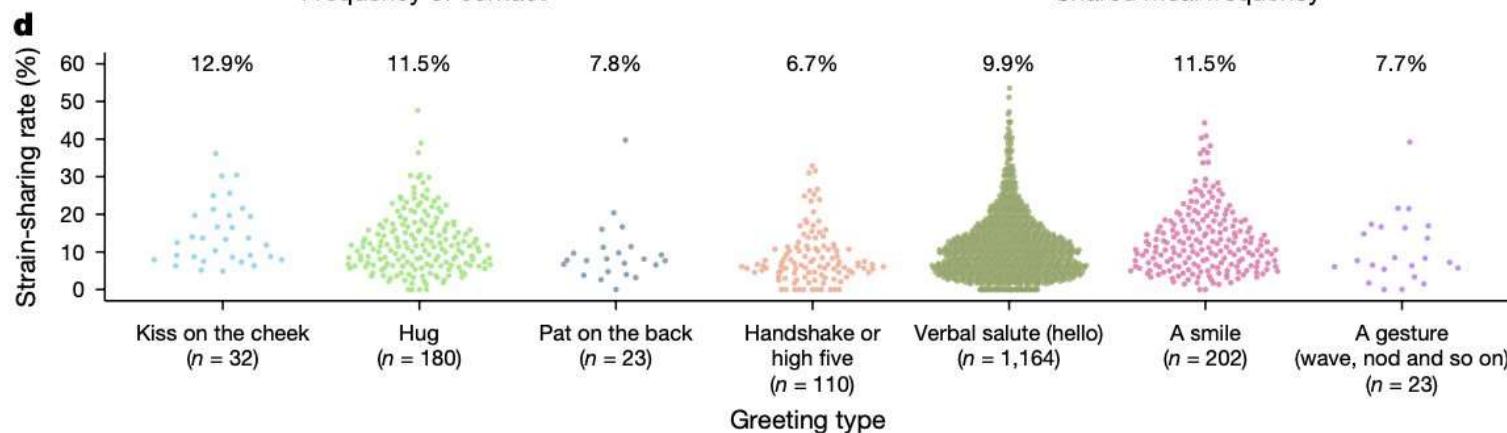
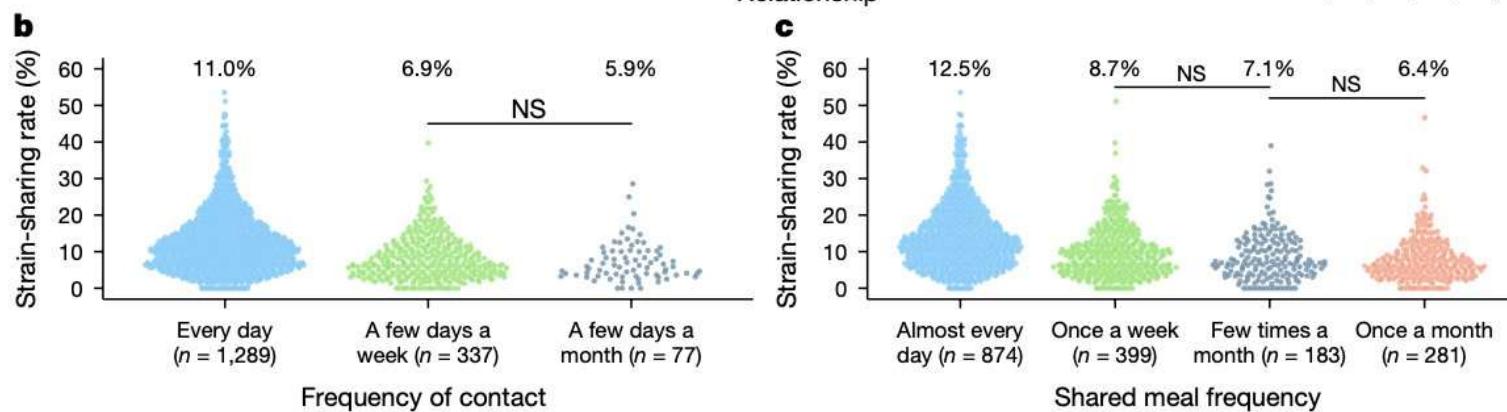
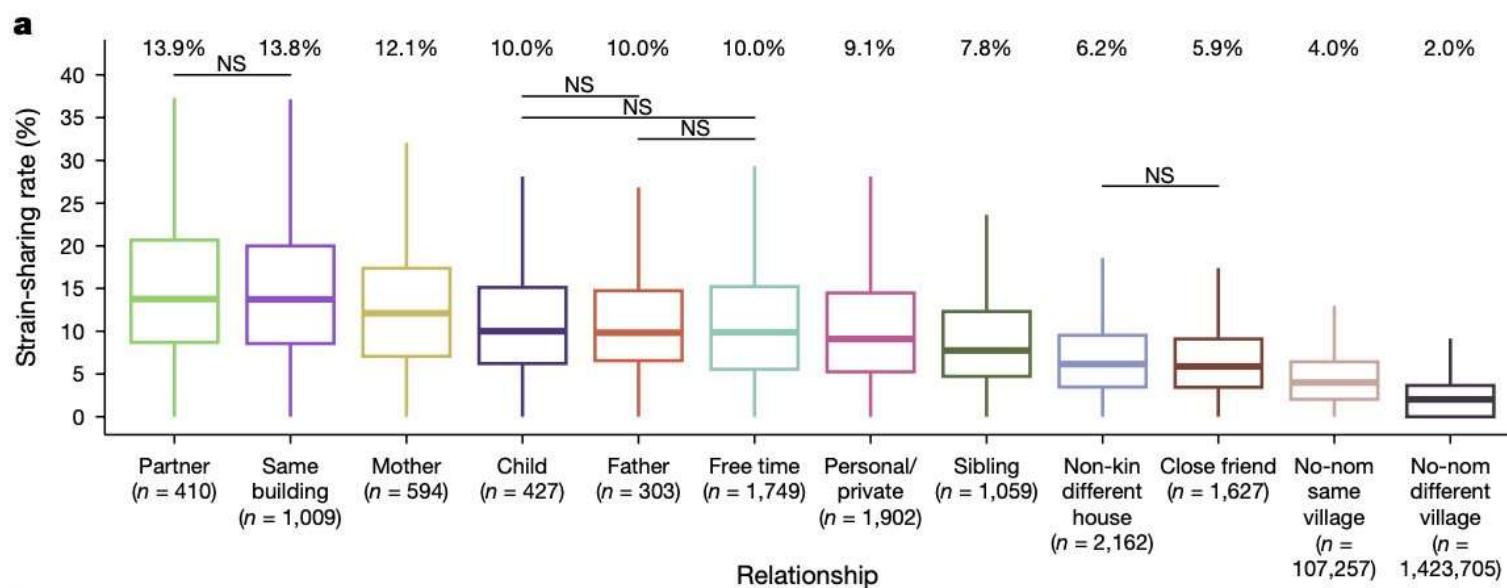
- Hayward – D-Mannose disappointing for UTI prevention
- Lopez-Cortes – De-escalate Abs in those with S GN bacteraemia
- Okhuysen – New (expensive) better CDAD drug: Ridinilazole
- Hozhev – Probiotics prevent antibiotic associated diarrhoea
- Sie – Don't give single dose Azithro to all babies in sub-Saharan Africa
- Sprague – Use ETOH-Iodine for closed fractures needing ORIF
- Wagenlehner – Gepticidan (+2 more)* new option for R UTI

*Pivmenicillin and Sulopenem/probenicid

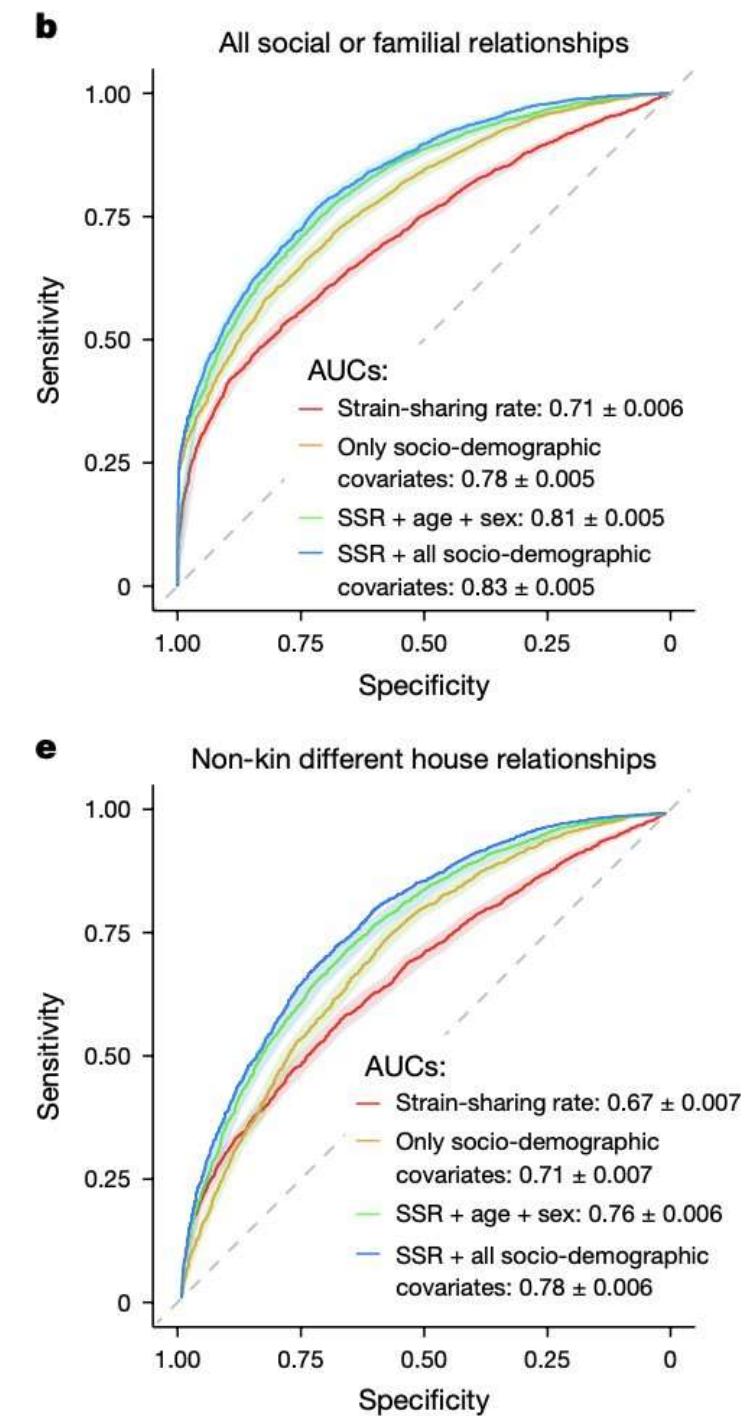
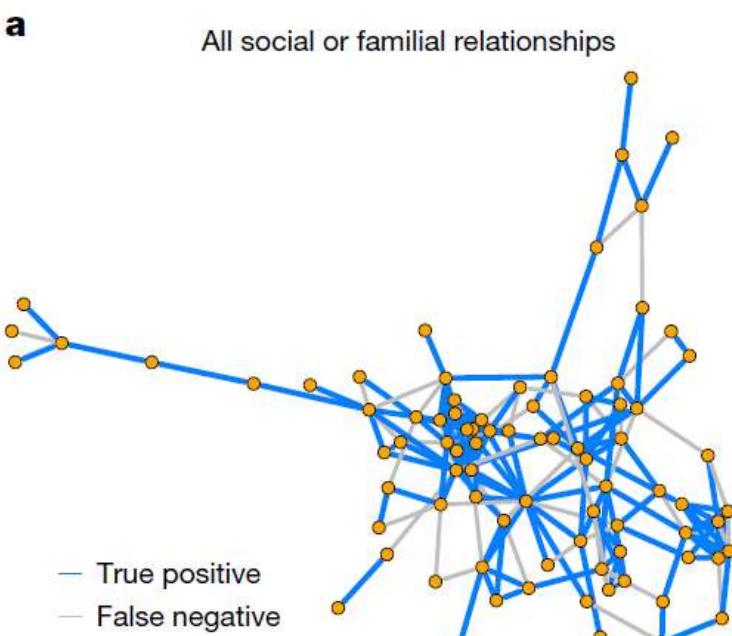
Gut microbiome strain-sharing within isolated village social networks

- WHY
 - Paradigm-shifting

Francesco Beghini^{1,10}, Jackson Pullman^{1,2,10}, Marcus Alexander¹,
Shivkumar Vishnempet Shridhar^{1,3}, Drew Prinster⁴, Adarsh Singh⁵, Rigoberto Matute Juárez⁶,
Edoardo M. Airoldi^{7,8}, Ilana L. Brito⁵ & Nicholas A. Christakis^{1,2,3,9}✉




Nature | www.nature.com |

Gut microbiome strain-sharing within isolated village social networks



- WHY
 - Paradigm-shifting
- WHAT/HOW
 - 1787 adults in 18 isolated Honduran villages had social network mapping and gut microbiome sequencing
- KEY FINDINGS
 - Microbial-sharing occurs both within households and with other relationships
 - Socially central people are more microbiologically similar to the overall village than socially peripheral people

Francesco Beghini^{1,10}, Jackson Pullman^{1,2,10}, Marcus Alexander¹,
Shivkumar Vishnempet Shridhar^{1,3}, Drew Prinster⁴, Adarsh Singh⁵, Rigoberto Matute Juárez⁶,
Edoardo M. Airoldi^{7,8}, Ilana L. Brito⁵ & Nicholas A. Christakis^{1,2,3,9}✉

Nature | www.nature.com |

- Strain-sharing rate can be used to guess who your friends are
- (Adding socio-demographic variables only increased this predictive ability a bit)

Gut microbiome strain-sharing within isolated village social networks

- WHY
 - Paradigm-shifting
- IMPLICATIONS
 - Diseases formerly thought to be non-communicable (e.g. obesity, inflammatory arthritis) may actually be (at least partially) transmissible!

Francesco Beghini^{1,10}, Jackson Pullman^{1,2,10}, Marcus Alexander¹,
Shivkumar Vishnempet Shridhar^{1,3}, Drew Prinster⁴, Adarsh Singh⁵, Rigoberto Matute Juárez⁶,
Edoardo M. Airoldi^{7,8}, Ilana L. Brito⁵ & Nicholas A. Christakis^{1,2,3,9}✉

Nature | www.nature.com |

The NEW ENGLAND JOURNAL *of* MEDICINE

ESTABLISHED IN 1812

OCTOBER 3, 2024

VOL. 391 NO. 13

Twice-Yearly Lenacapavir or Daily F/TAF for HIV Prevention in Cisgender Women

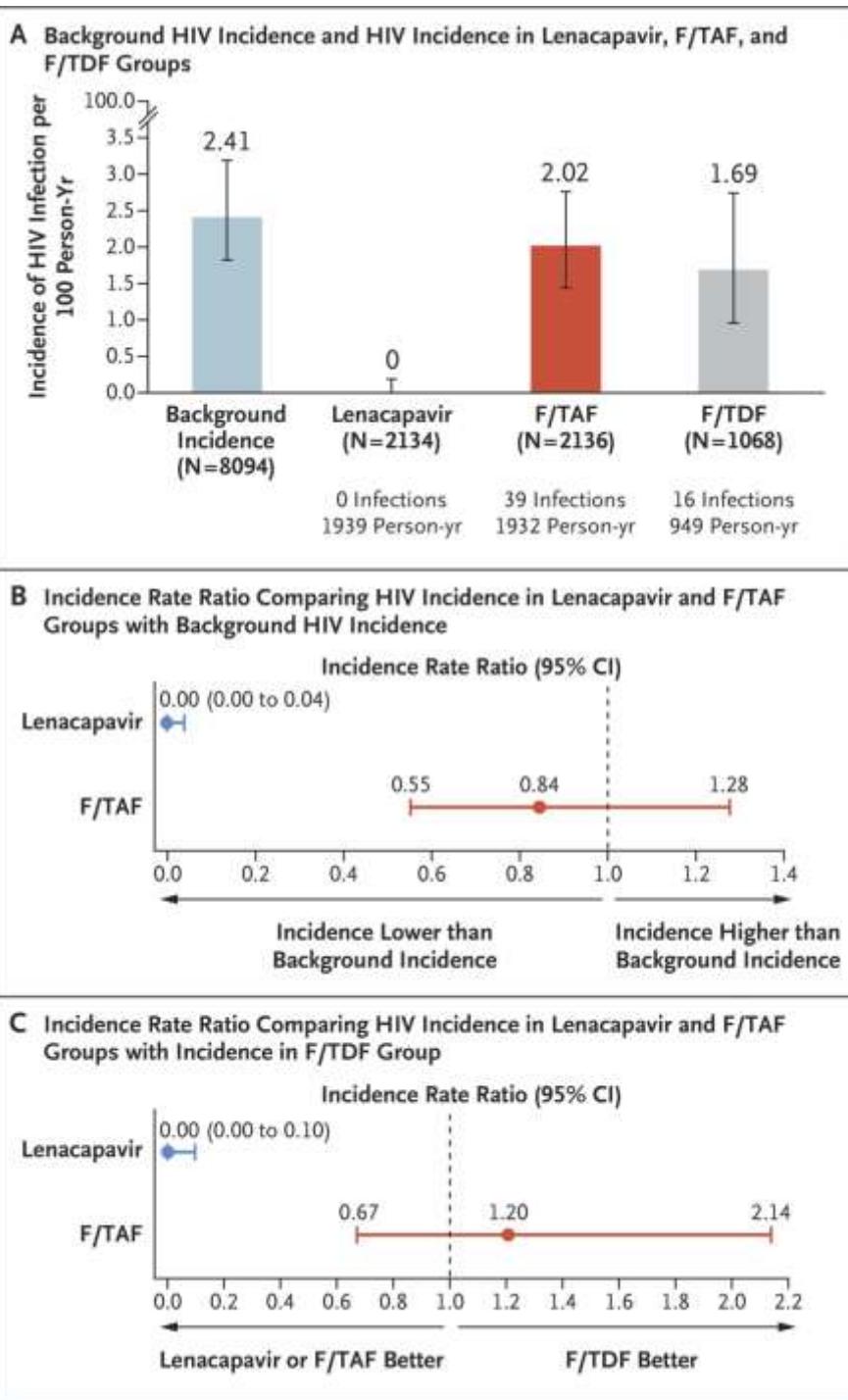
L.-G. Bekker, M. Das, Q. Abdoool Karim, K. Ahmed, J. Batting, W. Brumskine, K. Gill, I. Harkoo, M. Jaggernath, G. Kigozi, N. Kiwanuka, P. Kotze, L. Lebina, C.E. Louw, M. Malahleha, M. Manentsa, L.E. Mansoor, D. Moodley, V. Naicker, L. Naidoo, M. Naidoo, G. Nair, N. Ndlovu, T. Palanee-Phillips, R. Panchia, S. Pillay, D. Potloane, P. Selepe, N. Singh, Y. Singh, E. Spooner, A.M. Ward, Z. Zwane, R. Ebrahimi, Y. Zhao, A. Kintu, C. Deaton, C.C. Carter, J.M. Baeten, and F. Matovu Kiweewa, for the PURPOSE 1 Study Team*

- **WHY**

- Practice-changing

- **WHAT/HOW**

- Lenacapavir is an HIV capsid inhibitor with a long half life
- 5338 HIV-ve women from Sth Africa and Uganda randomised to 6-monthly subcut lenacapvir, daily FTC/TAF or daily FTC/TDF OR matching placebo
- 1ry outcome: incidence of new HIV infections


Table 1. Demographic and Clinical Characteristics of the Participants at Baseline.*

Characteristic	Lenacapavir (N=2138)	F/TAF (N=2137)	F/TDF (N=1070)
Age			
Median(range) — yr	21 (16–25)	21 (16–26)†	21 (16–25)
16 or 17 yr — no. (%)	56 (2.6)	45 (2.1)	23 (2.1)
Black race — no. (%)‡	2135 (99.9)	2136 (>99.9)	1068 (99.8)
Education — no./total no. (%)			
No primary school	17/2136 (0.8)	19/2134 (0.9)	3/1069 (0.3)
Primary school	235/2136 (11.0)	223/2134 (10.4)	106/1069 (9.9)
Secondary school	1701/2136 (79.6)	1694/2134 (79.4)	851/1069 (79.6)
College or university	183/2136 (8.6)	198/2134 (9.3)	109/1069 (10.2)
Married — no./total no. (%)	26/2136 (1.2)	30/2134 (1.4)	17/1069 (1.6)
Living with primary partner — no./total no. (%)	148/2136 (6.9)	132/2134 (6.2)	73/1069 (6.8)
Sexually transmitted infection			
<i>Chlamydia trachomatis</i>	520 (24.3)	562 (26.3)	263 (24.6)
<i>Neisseria gonorrhoeae</i>	197 (9.2)	178 (8.3)	90 (8.4)
<i>Trichomonas vaginalis</i>	154 (7.2)	165 (7.7)	82 (7.7)
Syphilis	57 (2.7)	63 (2.9)	29 (2.7)
Any previous use of PrEP — no. (%)	143 (6.7)	121 (5.7)	71 (6.6)
Any previous HIV testing — no. (%)	1713 (80.1)	1731 (81.0)	860 (80.4)
Median time since last HIV test (IQR) — mo	6.8 (4.7–11.5)	6.6 (4.8–11.0)	6.5 (4.6–11.0)
Country — no. (%)			
South Africa	1809 (84.6)	1790 (83.8)	909 (85.0)
Uganda	329 (15.4)	347 (16.2)	161 (15.0)

* F/TAF denotes emtricitabine–tenofovir alafenamide, F/TDF emtricitabine–tenofovir disoproxil fumarate, HIV human immunodeficiency virus, IQR interquartile range, and PrEP preexposure prophylaxis.

† One person was screened at 25 years of age but was 26 years of age by the time of randomization. This was not a violation of the eligibility criteria.

‡ Race was reported by the participants. All non-Black participants were multiracial.

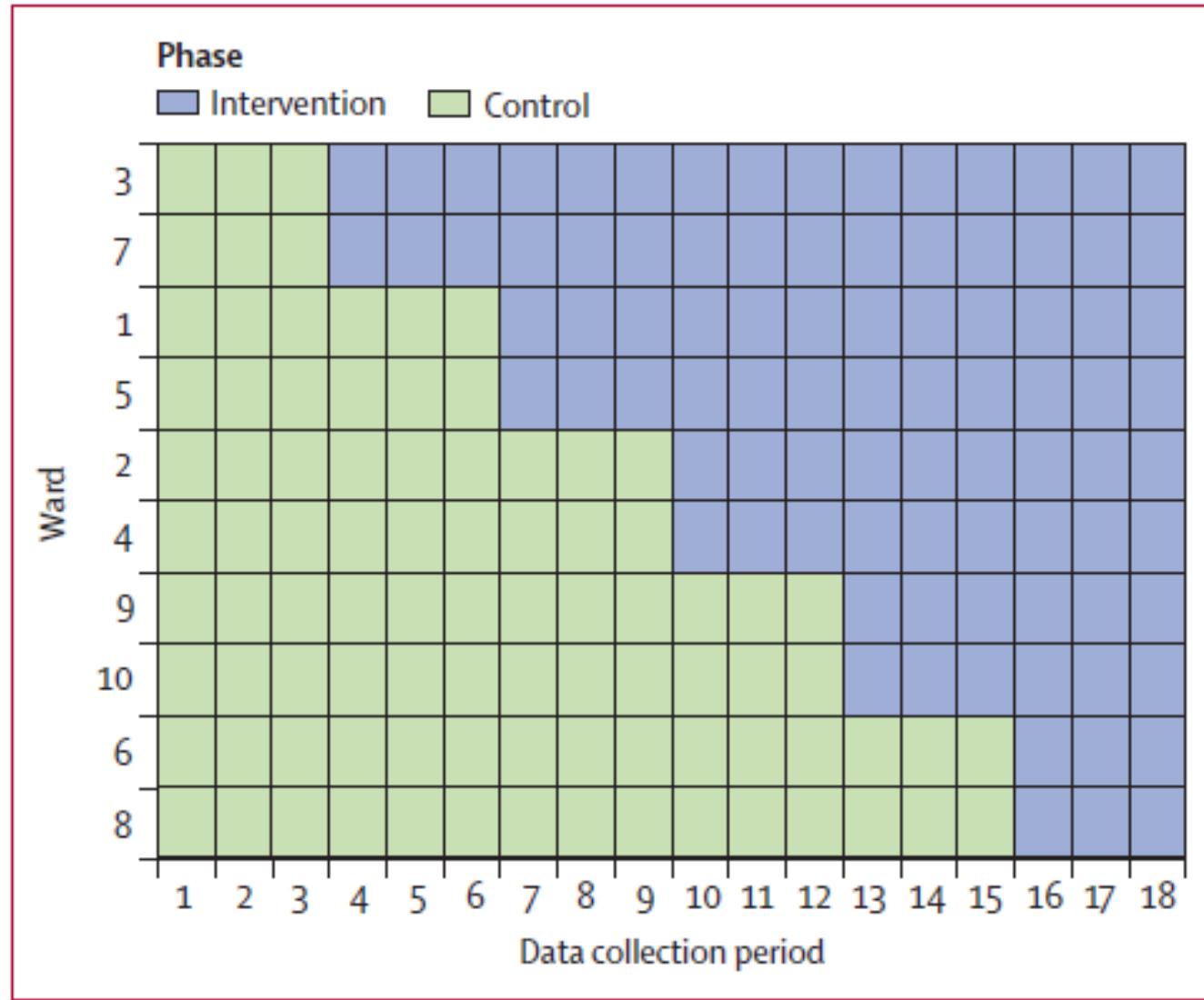
Bekker – PURPOSE trial - NEJM

- WHY
 - Practice-changing
- IMPLICATIONS
 - PURPOSE 2 trial showed the same in men (and gender diverse people) across 7 countries including USA
 - If you don't take a drug it doesn't work!
 - Lenacapavir should be the standard of care for PREP in those at high risk of HIV BUT cost and health economics are a barrier
 - Current estimated cost=\$40,000/person/year, versus ~\$1,500 for TDF/FTC

Browne – CLEEN trial – Lancet ID

- WHY
 - Practice-changing

Investigating the effect of enhanced cleaning and disinfection of shared medical equipment on health-care-associated infections in Australia (CLEEN): a stepped-wedge, cluster randomised, controlled trial


Katrina Browne, Nicole M White, Philip L Russo, Allen C Cheng, Andrew J Stewardson, Georgia Matterson, Peta E Tehan, Kirsty Graham, Maham Amin, Maria Northcote, Martin Kiernan, Jennie King, David Brain, Brett G Mitchell

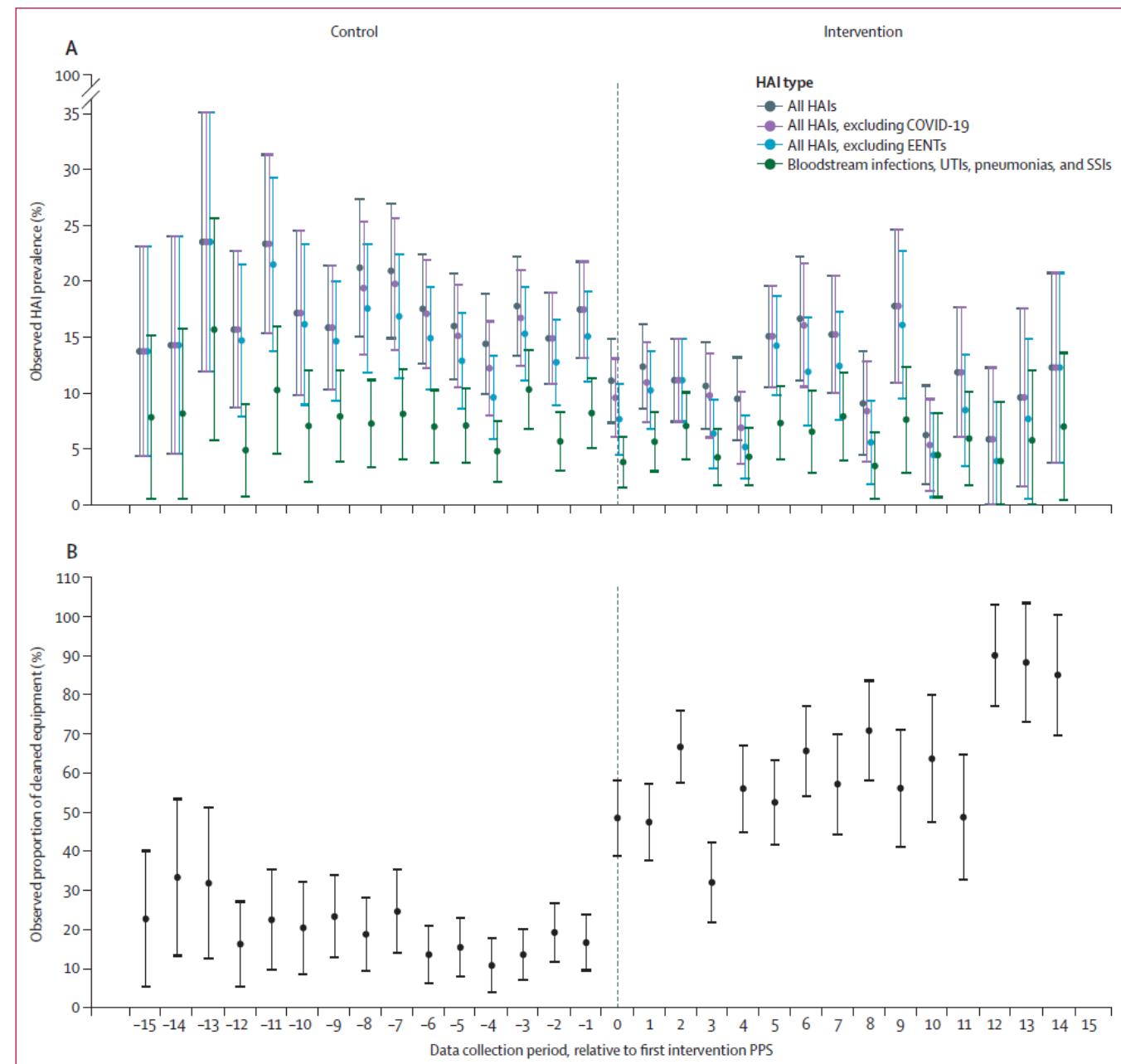
- **WHY**

- Practice-changing

- **WHAT/HOW**

- Stepped-wedge cluster RCT in ten wards of Gosford hospital
 - Intervention: multimodal cleaning bundle of shared medical equipment – extra 3h per day by trained study staff
 - E.g. Shpygmos, walking frames, commodes, drip stands
 - Primary outcome incidence of new HAI (fortnightly point-prevalence survey)

Figure 1: Stepped-wedge trial design
Each data collection period represents a 2-week period.


	All patients (n=5002), n (%)	Patients without HAI (n=4417), n (%)	Patients with ≥1 HAI (n=585), n (%)	Control (n=2494), n (%)	Intervention (n=2508), n (%)
Sex					
Female	2524 (50.5%)	2235 (50.6%)	289 (49.4%)	1254 (50.3%)	1270 (50.6%)
Male	2478 (49.5%)	2182 (49.4%)	296 (50.6%)	1240 (49.7%)	1238 (49.4%)
Age, years					
Median (IQR)	75 (63-83)	75 (63-83)	75 (66-83)	75 (63-83)	75 (63-84)
Mean (SD)	71.6 (16.1)	71.4 (16.3)	73.2 (14.0)	71.4 (15.9)	71.9 (16.3)
Emergency admission	4159 (83.1%)	3710 (84.0%)	449 (76.8%)	2055 (82.4%)	2104 (83.9%)
Current colonisation or infection with multiresistant organism	610 (12.2%)	485 (11.0%)	125 (21.4%)	339 (13.6%)	271 (10.8%)
Ward duration of stay before survey, days					
Median (IQR)	7 (3-16)	6 (3-14)	14 (8-27)	7 (3-17)	7 (3-15)
Mean (SD)	15.8 (34.4)	14.7 (33.1)	24.2 (41.7)	16.8 (39.3)	14.8 (28.6)
Peripheral vascular access device present	2347 (46.9%)	2052 (46.5%)	295 (50.4%)	1192 (47.8%)	1155 (46.1%)
Central vascular access device present	316 (6.3%)	225 (5.1%)	91 (15.6%)	176 (7.1%)	140 (5.6%)
Indwelling urinary catheter present	785 (15.7%)	645 (14.6%)	140 (23.9%)	406 (16.3%)	379 (15.1%)
Ventilated	415 (8.3%)	343 (7.8%)	72 (12.3%)	197 (7.9%)	218 (8.7%)
Ward specialty					
Geriatric	530 (10.6%)	472 (10.7%)	58 (9.9%)	101 (4.0%)	429 (17.1%)
Neurology	555 (11.1%)	503 (11.4%)	52 (8.9%)	195 (7.8%)	360 (14.4%)
Oncology	588 (11.8%)	480 (10.9%)	108 (18.5%)	425 (17.0%)	163 (6.5%)
Orthopaedic	519 (10.4%)	460 (10.4%)	59 (10.1%)	412 (16.5%)	107 (4.3%)
Other	1 (0.0%)	1 (0.0%)	0	0	1 (0.0%)
Renal	442 (8.8%)	388 (8.8%)	54 (9.2%)	174 (7.0%)	268 (10.7%)
Respiratory	586 (11.7%)	532 (12.0%)	54 (9.2%)	311 (12.5%)	275 (11.0%)
Surgical	1675 (33.5%)	1488 (33.7%)	187 (32.0%)	828 (33.2%)	847 (33.8%)
Vascular	106 (2.1%)	93 (2.1%)	13 (2.2%)	48 (1.9%)	58 (2.3%)

Data are n (%) unless otherwise stated. Three patients had two separate admissions to hospital and are recorded only once in the baseline demographic information.

HAI=health-care-associated infection.

Table 1: Baseline characteristics for all patients and stratified by HAI acquisition

- Control period HAs
 - 433/2497 (17.3%, 15.9-18.8%)
- Intervention period HAs
 - 301/2508 (12.0%, 10.7-13.3%)
- **Relative reduction of 34.5%**

Investigating the effect of enhanced cleaning and disinfection of shared medical equipment on health-care-associated infections in Australia (CLEEN): a stepped-wedge, cluster randomised, controlled trial

Katrina Browne, Nicole M White, Philip L Russo, Allen C Cheng, Andrew J Stewardson, Georgia Matterson, Peta E Tehan, Kirsty Graham, Maham Amin, Maria Northcote, Martin Kiernan, Jennie King, David Brain, Brett G Mitchell

- **WHY**

- Practice-changing

- **IMPLICATIONS**

- Hospital environmental cleaning is crucial and under-appreciated AND reduces acquisition of HAIs
 - BUT it is resource intensive to do it properly
 - Needs to be repeated in other/larger hospitals and settings to assess generalisability

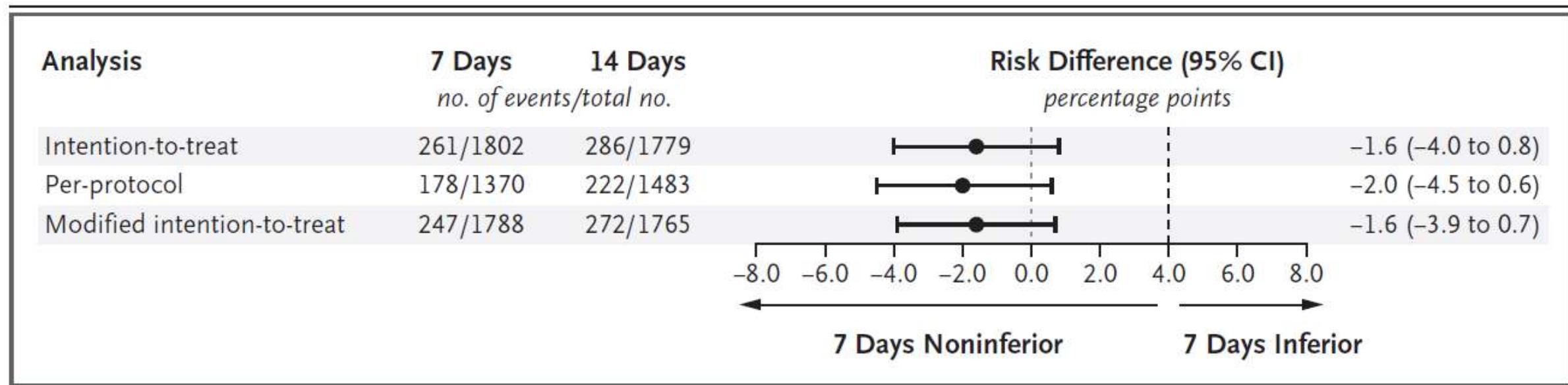
Antibiotic Treatment for 7 versus 14 Days in Patients with Bloodstream Infections

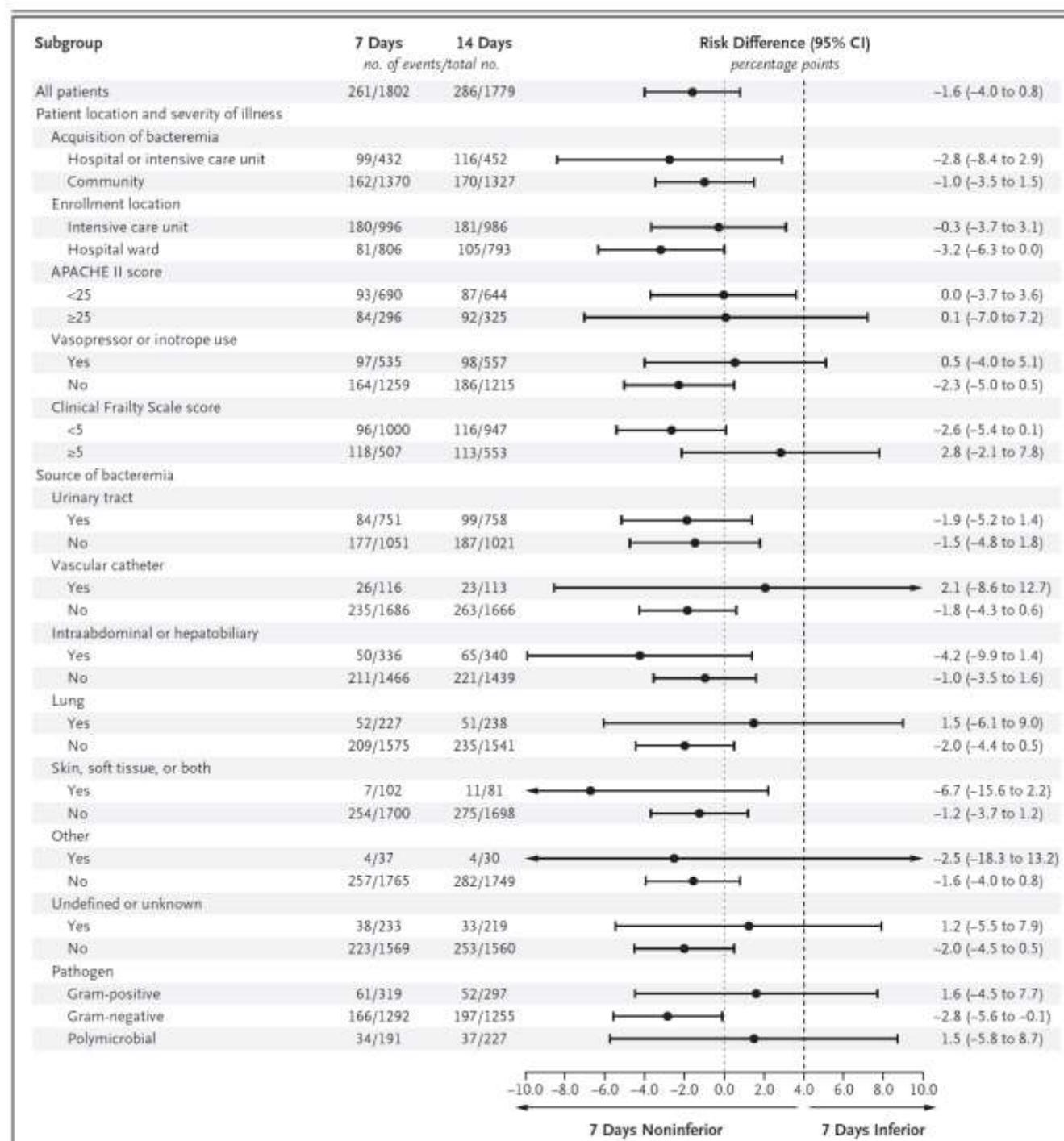
The BALANCE Investigators, for the Canadian Critical Care Trials Group, the Association of Medical Microbiology and Infectious Disease Canada Clinical Research Network, the Australian and New Zealand Intensive Care Society Clinical Trials Group, and the Australasian Society for Infectious Diseases Clinical Research Network

- **WHY**

- Practice-changing

- **WHAT/HOW**

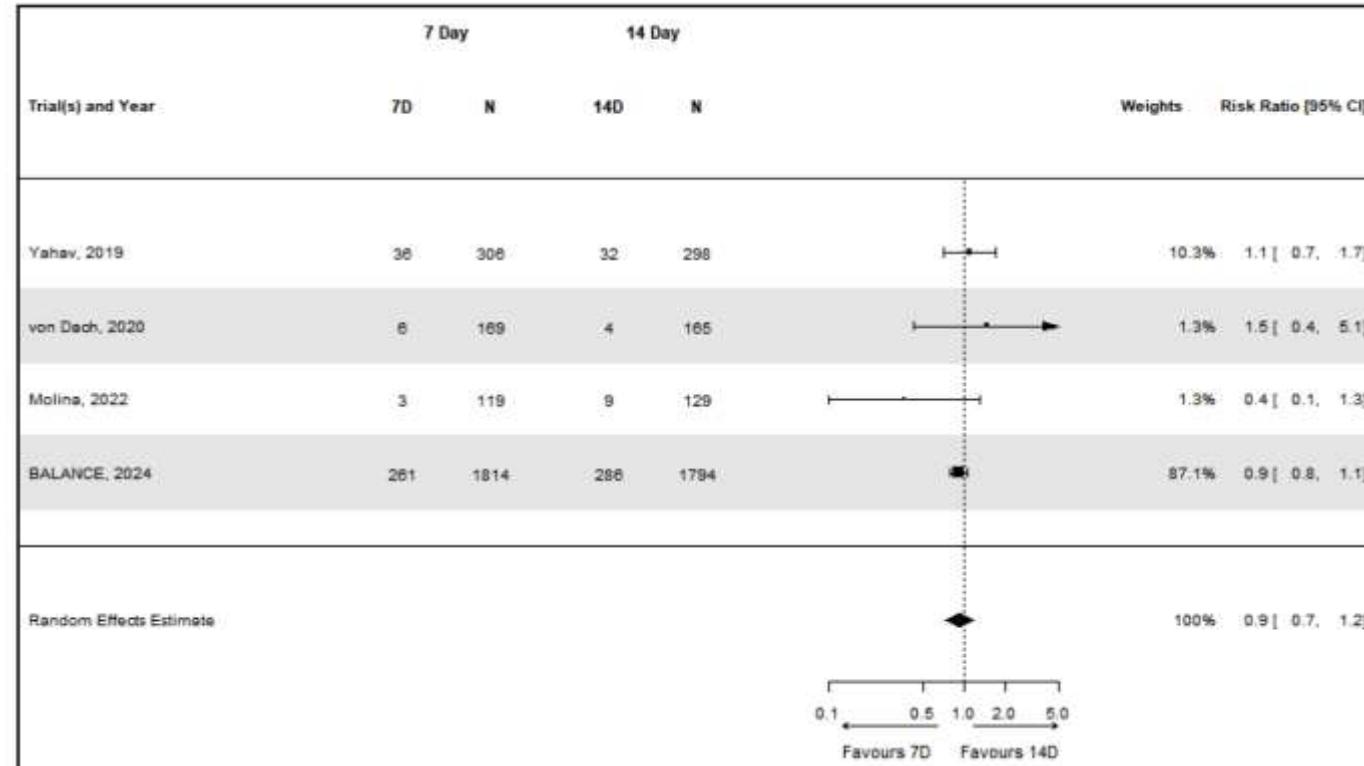

- RCT in 74 hospitals, 7 countries, 3608 patients (55% in ICU)
 - Randomised to 7 vs 14 days total antibiotic duration for bacteraemia
 - *S.aureus* and fungi excluded
 - Need for prolonged Rx excluded (e.g. endocarditis, BJI, undrained collections)
 - Timing of oral switch and choice of ABs at clinicians' discretion


Top 11 pathogens*	Overall N=3608	7-day arm N=1814	14-day arm N=1794
<i>Escherichia coli</i>	1582 (43.8)	805 (44.4)	777 (43.3)
<i>Klebsiella</i> spp.	552 (15.3)	273 (15.0)	279 (15.6)
<i>Enterococcus</i> spp.	250 (6.9)	119 (6.6)	131 (7.3)
<i>Coag. neg. staph.</i>	174 (4.8)	81 (4.5)	93 (5.2)
<i>Pseudomonas</i> spp.	170 (4.7)	80 (4.4)	90 (5.0)
<i>Strep. pneumoniae</i>	164 (4.5)	86 (4.7)	78 (4.3)
<i>Enterobacter</i> spp.	157 (4.4)	80 (4.4)	77 (4.3)
<i>Proteus</i> spp.	133 (3.7)	58 (3.2)	75 (4.2)
<i>Serratia</i> spp.	86 (2.4)	38 (2.1)	48 (2.7)
<i>Strep. pyogenes</i>	74 (2.1)	39 (2.1)	35 (2.0)
<i>Strep. agalactiae</i>	75 (2.1)	40 (2.2)	35 (2.0)

*more than 70 different pathogens in total

Table 2. Primary and Secondary Outcomes.

	7-Day Group (N=1814)	14-Day Group (N=1794)	Difference (95% CI)*
<i>percentage points</i>			
Primary outcome, death from any cause by 90 days — no./total no. (%)			
Primary analysis, intention-to-treat population	261/1802 (14.5)	286/1779 (16.1)	-1.6 (-4.0 to 0.8)
Secondary analysis, per-protocol population	178/1370 (13.0)	222/1483 (15.0)	-2.0 (-4.5 to 0.6)
Modified intention-to-treat analysis, survival ≥ 7 days	247/1788 (13.8)	272/1765 (15.4)	-1.6 (-3.9 to 0.7)
Secondary outcomes			
Death in hospital — no. (%)†	168 (9.3)	184 (10.3)	-1.0 (-2.9 to 0.9)



Antibiotic Treatment for 7 versus 14 Days in Patients with Bloodstream Infections

The BALANCE Investigators, for the Canadian Critical Care Trials Group, the Association of Medical Microbiology and Infectious Disease Canada Clinical Research Network, the Australian and New Zealand Intensive Care Society Clinical Trials Group, and the Australasian Society for Infectious Diseases Clinical Research Network

- **WHY**
 - Practice-changing
- **IMPLICATIONS**
 - 7 days of antibiotics should be the standard duration for bacteraemia UNLESS it is *S.aureus* or is a defined syndrome with a clear need for longer durations
 - Regardless of disease severity, ICU admission, focus of infection

Continuous vs Intermittent β -Lactam Antibiotic Infusions in Critically Ill Patients With Sepsis The BLING III Randomized Clinical Trial

Joel M. Dulhunty, MD, PhD; Stephen J. Brett, MD; Jan J. De Waele, MD, PhD;
Dorrilyn Rajbhandari, PGDip(Clinical Nursing); Laurent Billot, MRes; Menino O. Cotta, PhD;
Joshua S. Davis, MD, PhD; Simon Finfer, MD; Naomi E. Hammond, RN, PhD; Serena Knowles, RN, PhD;
Xiaoqiu Liu, PhD; Shay McGuinness, MD; Jayanthi Mysore, MS; David L. Paterson, MD, PhD;
Sandra Peake, MD, PhD; Andrew Rhodes, MD, MD(Res); Jason A. Roberts, BPharm, PhD; Claire Roger, MD, PhD;
Charudatt Shirwadkar, MD; Therese Starr, RN; Colman Taylor, PhD; John A. Myburgh, MD, PhD;
Jeffrey Lipman, MD, DMed(Res); for the BLING III Study Investigators

- **WHY**

- Practice-changing

- **WHAT/HOW**

- RCT in 104 ICUs in 7 countries
 - 7,202 adults with sepsis treated with pip/tazo or meropenem randomised to continuous infusion or intermittent dosing
 - Primary outcome=90 day all-cause mortality

QUESTION Is there a difference in mortality between continuous and intermittent infusions of β -lactam antibiotics in critically ill patients with sepsis?

CONCLUSION In critically ill patients with sepsis, continuous vs intermittent β -lactam antibiotic infusions did not significantly reduce 90-day mortality in the primary analysis. A clinically important benefit with continuous infusions is possible.

© AMA

POPULATION

4608 Men
2423 Women

Critically ill adults aged ≥ 18 years treated for sepsis

Mean age: 59 years

LOCATION

104
ICUs worldwide

INTERVENTION

7031 Patients randomized

3498

Continuous infusion

Continuous infusion
(over 24 hours) of either
piperacillin-tazobactam
or meropenem

3533

Intermittent infusion

Intermittent infusion
(over 30 minutes) of either
piperacillin-tazobactam
or meropenem

FINDINGS

All-cause mortality at day 90

Continuous infusion

864 of 3474 patients

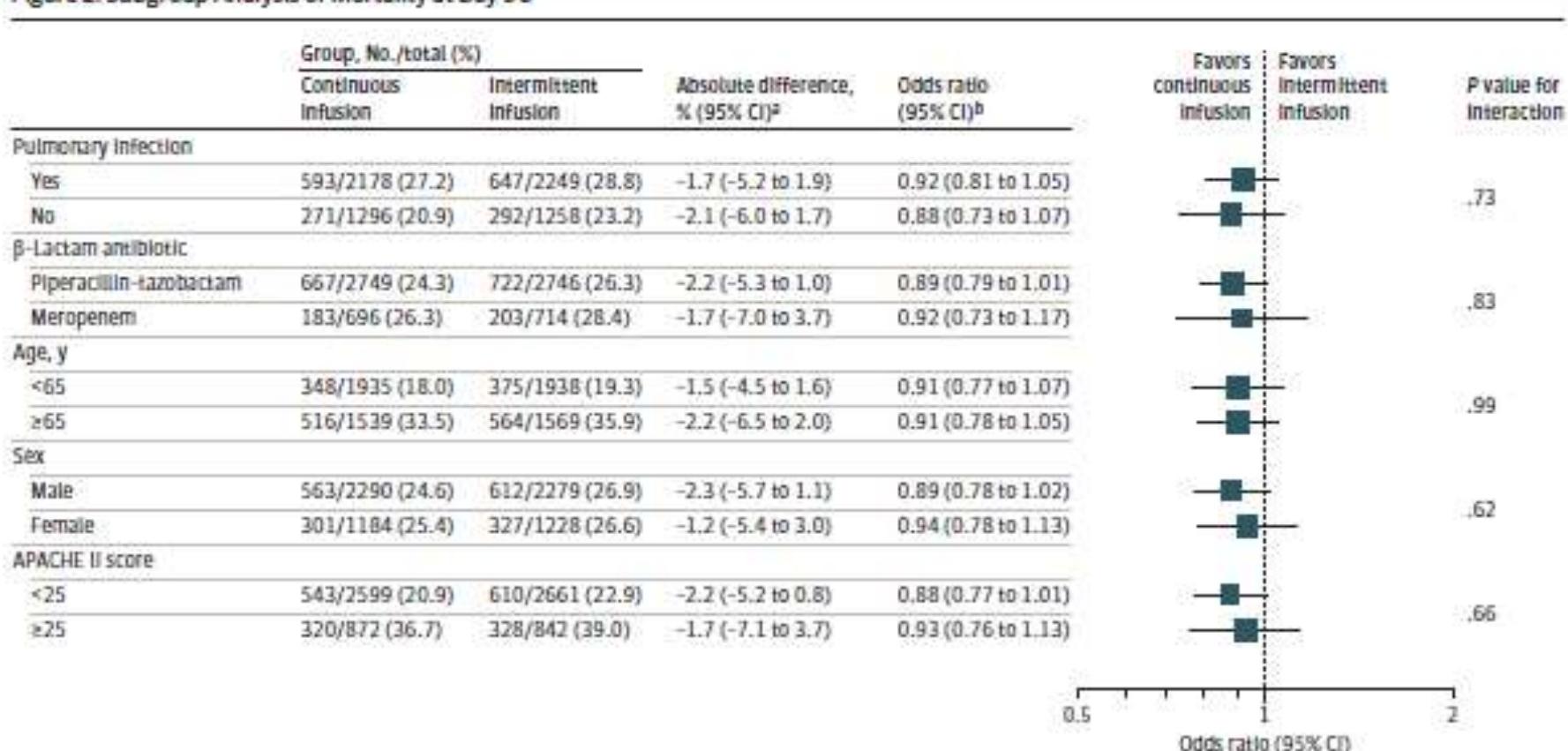
24.9%

Intermittent infusion

939 of 3507 patients

26.8%

Absolute difference, **-1.9%** (95% CI, -4.9% to 1.1%)


Odds ratio, **0.91** (95% CI, 0.81 to 1.01); $P = .08$

Dulhunty JM, Brett SJ, De Waele JJ, et al; BLING III Study Investigators. Continuous vs intermittent β -lactam antibiotic infusions in critically ill patients with sepsis: the BLING III randomized clinical trial. *JAMA*. Published June 12, 2024. doi:10.1001/jama.2024.9779

Table 2. Reporting of Primary, Secondary, and Tertiary Outcomes

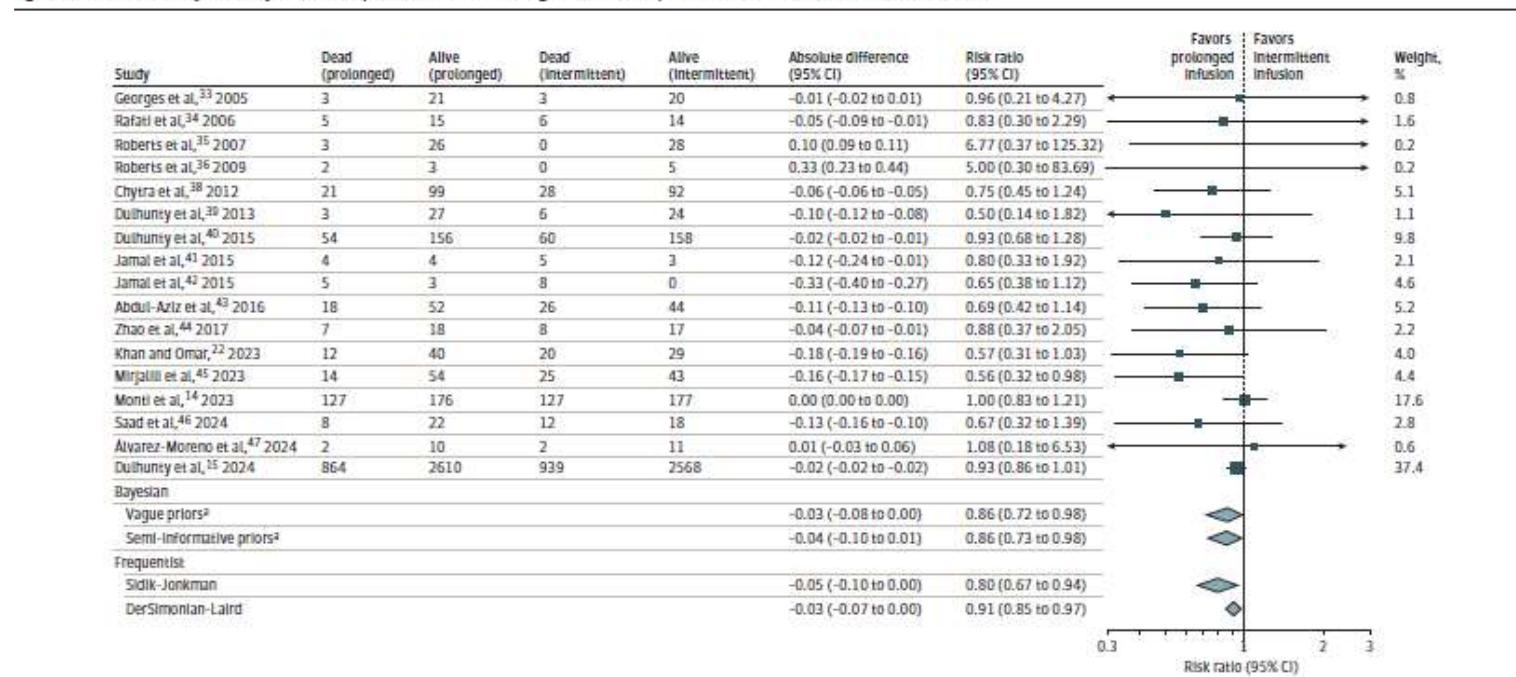
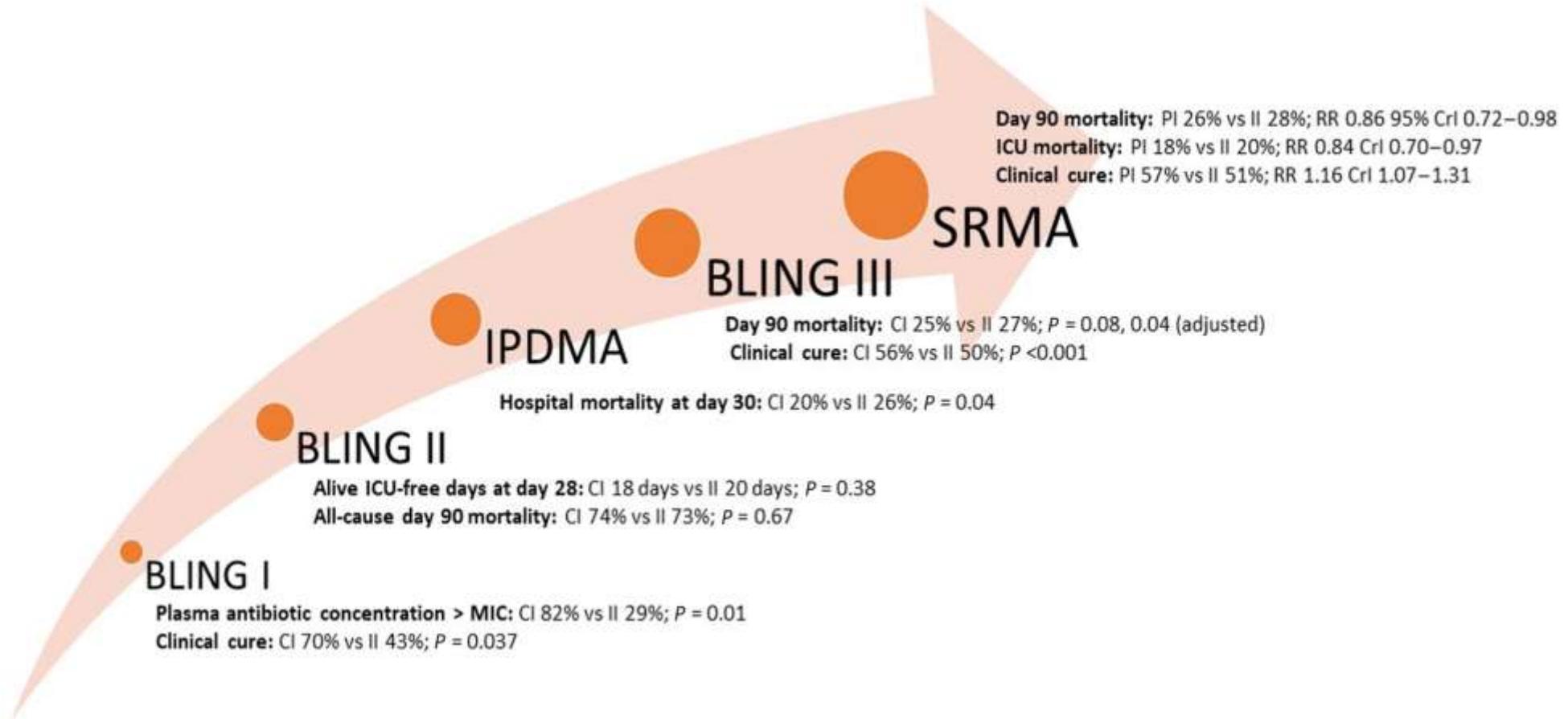

Outcome	Continuous Infusion (n = 3498) ^a	Intermittent Infusion (n = 3533) ^a	Absolute difference, % (95% CI)	Odds ratio or mean difference (95% CI)	P value ^b
Primary outcome					
All-cause mortality at day 90, No./total (%)	864/3474 (24.9)	939/3507 (26.8)	-1.9 (-4.9 to 1.1)	0.91 (0.81 to 1.01)	.08
Adjusted analysis			-2.2 (-5.5 to 1.1)	0.89 (0.79 to 0.99)	.04
Secondary outcomes					
Clinical cure at day 14, No./total (%)	1930/3467 (55.7)	1744/3491 (50.0)	5.7 (2.4 to 9.1)	1.26 (1.15 to 1.38)	<.001
New acquisition, colonization, or infection with an MRO or <i>C difficile</i> , No./total (%) ^c	253/3498 (7.2)	266/3533 (7.5)	-0.3 (-1.9 to 1.4)	0.96 (0.80 to 1.15)	.65
All-cause ICU mortality, No./total (%)	595/3474 (17.1)	645/3507 (18.4)	-1.3 (-4.0 to 1.4)	0.92 (0.81 to 1.04)	.35
All-cause hospital mortality, No./total (%)	808/3474 (23.3)	878/3507 (25.0)	-1.8 (-4.8 to 1.2)	0.91 (0.81 to 1.02)	.27

Figure 2. Subgroup Analysis of Mortality at Day 90



Prolonged vs Intermittent Infusions of β -Lactam Antibiotics in Adults With Sepsis or Septic Shock

A Systematic Review and Meta-Analysis

Figure 1. All-Cause 90-Day Mortality for the Comparison Between Prolonged Infusions of β -Lactam Antibiotics vs Intermittent Infusions

- 9,108 critically ill adults across 18 RCTs
- Pooled risk ratio 90-day mortality=0.86 (95% CI 0.70-0.97)
- Pooled risk of clinical cure 1.16 (95% CI 1.07-1.31)

Continuous vs Intermittent β -Lactam Antibiotic Infusions in Critically Ill Patients With Sepsis The BLING III Randomized Clinical Trial

Joel M. Dulhunty, MD, PhD; Stephen J. Brett, MD; Jan J. De Waele, MD, PhD;
Dorrilyn Rajbhandari, PGDip(Clinical Nursing); Laurent Billot, MRes; Menino O. Cotta, PhD;
Joshua S. Davis, MD, PhD; Simon Finfer, MD; Naomi E. Hammond, RN, PhD; Serena Knowles, RN, PhD;
Xiaoqiu Liu, PhD; Shay McGuinness, MD; Jayanthi Mysore, MS; David L. Paterson, MD, PhD;
Sandra Peake, MD, PhD; Andrew Rhodes, MD, MD(Res); Jason A. Roberts, BPharm, PhD; Claire Roger, MD, PhD;
Charudatt Shirwadkar, MD; Therese Starr, RN; Colman Taylor, PhD; John A. Myburgh, MD, PhD;
Jeffrey Lipman, MD, DMed(Res); for the BLING III Study Investigators

- **WHY**

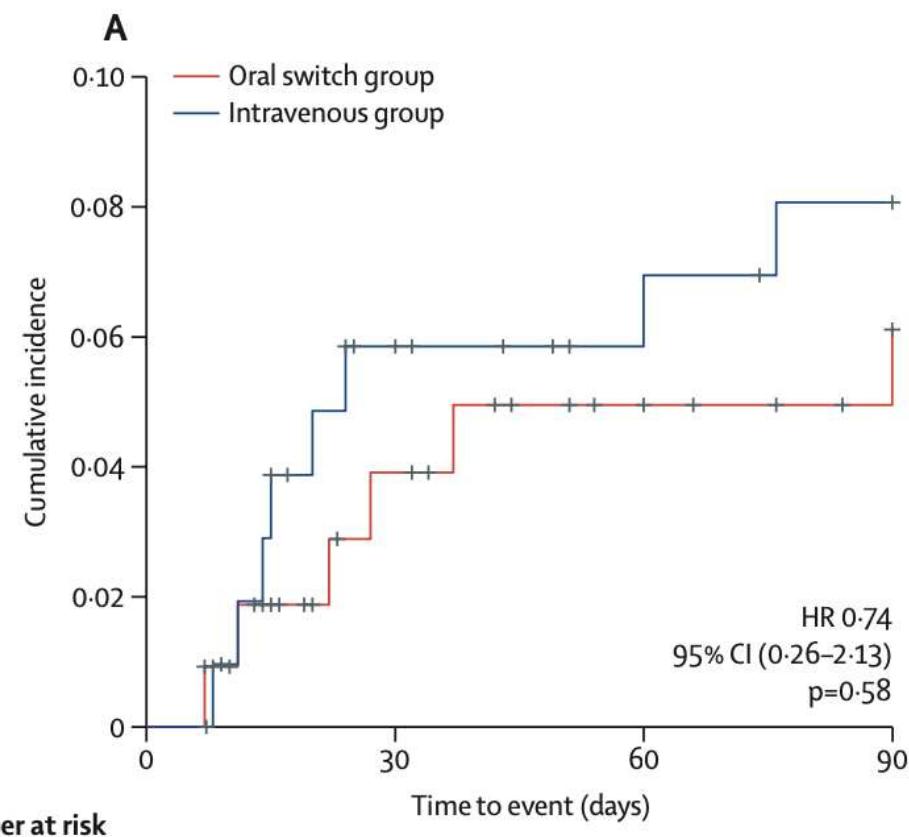
- Practice-changing

- **IMPLICATIONS**

- In critically ill adults treated with beta-lactams for suspected or proven sepsis, antibiotics should be administered by continuous infusion wherever possible
 - Unclear if this applies to children or to non-critically ill people

Efficacy and safety of an early oral switch in low-risk *Staphylococcus aureus* bloodstream infection (SABATO): an international, open-label, parallel-group, randomised, controlled, non-inferiority trial

Achim J Kaasch, Luis Eduardo López-Cortés, Jesús Rodríguez-Baño, José Miguel Cisneros, M Dolores Navarro, Gerd Fätkenheuer, Norma Jung, Siegbert Rieg, Raphaël Lepeule, Laetitia Coutte, Louis Bernard, Adrien Lemaignen, Katrin Kösters, Colin R MacKenzie, Alex Soriano, Stefan Hagel, Bruno Fantin, Matthieu Lafaurie, Jean-Philippe Talarmin, Aurélien Dinh, Thomas Guimard, David Bouteille, Tobias Welte, Stefan Reuter, Jan Kluytmans, Maria Luisa Martin, Emmanuel Forestier, Hartmut Stocker, Virginie Vitrat, Pierre Tattevin, Anna Rommerskirchen, Marion Noret, Anne Adams, Winfried V Kern, Martin Hellmich, Harald Seifert, for the SABATO study group*


• WHY

- (Potentially) Practice-changing
- Dogma challenging

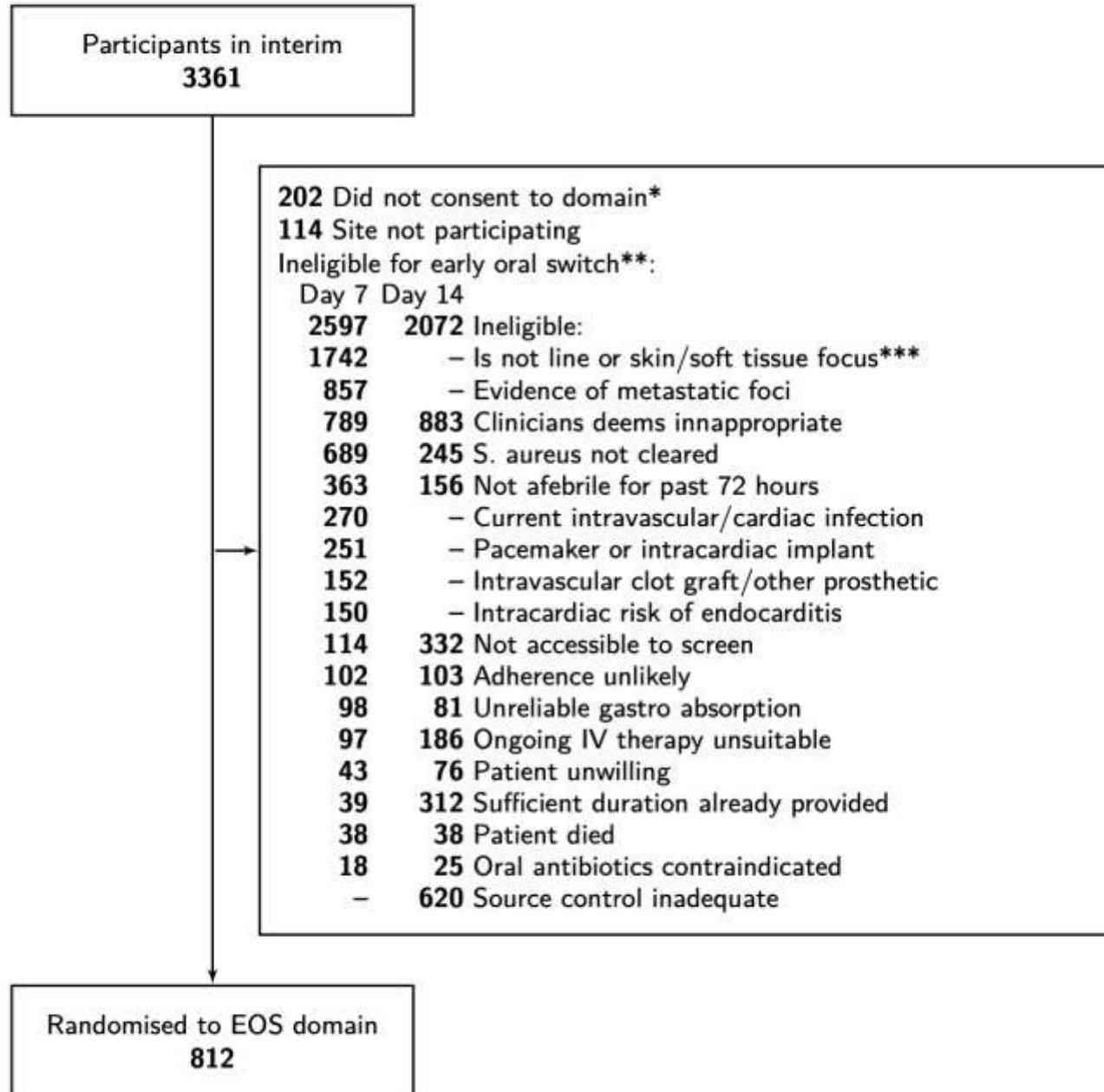
• WHAT/HOW

- RCT in 31 hospitals in 4 Germany, Spain, France and the Netherlands
- 213 patients with low-risk SAB randomised to switch to oral antibiotics after 5-7 days or to complete 14 days IV
- Outcome was composite of SAB complication by day 90
 - Attributable death, relapse, new deep-seated infection
- Used cotrimoxazole, clindamycin or linezolid PO (in that hierarchy)

	Intention-to-treat population			Clinically evaluable population		
	Oral switch group (n=108)	Intravenous group (n=105)	Percentage-point difference (95% CI)	Oral switch group (n=86)	Intravenous group (n=79)	Percentage-point difference (95% CI)
Primary endpoint						
SAB-related complication within 90 days	14 (13%)	13 (12%)	0.7 (-7.8 to 9.1)	3 (4%)	4 (5%)	-2.9 (-9.6 to 3.9)

Efficacy and safety of an early oral switch in low-risk *Staphylococcus aureus* bloodstream infection (SABATO): an international, open-label, parallel-group, randomised, controlled, non-inferiority trial

Achim J Kaasch, Luis Eduardo López-Cortés, Jesús Rodríguez-Baño, José Miguel Cisneros, M Dolores Navarro, Gerd Fätkenheuer, Norma Jung, Siegbert Rieg, Raphaël Lepeule, Laetitia Coutte, Louis Bernard, Adrien Lemaignen, Katrin Kösters, Colin R MacKenzie, Alex Soriano, Stefan Hagel, Bruno Fantin, Matthieu Lafaurie, Jean-Philippe Talarmin, Aurélien Dinh, Thomas Guimard, David Bouteille, Tobias Welte, Stefan Reuter, Jan Kluytmans, Maria Luisa Martin, Emmanuel Forestier, Hartmut Stocker, Virginie Vitrat, Pierre Tattevin, Anna Rommerskirchen, Marion Noret, Anne Adams, Winfried V Kern, Martin Hellmich, Harald Seifert, for the SABATO study group*


• WHY

- (Potentially) Practice-changing
- Dogma challenging

• IMPLICATIONS

- Note 5063 patients screened to get 213 enrolled
- Note trial stopped early; original sample size=430; Non-inferiority margin=10%
- i.e. it is very hard to do these trials, and it doesn't apply to most SAB patients!
- BUT gives us confidence to keep enrolling in SNAP EOS domain

Figure 6: Flowchart of participants' progress through the early oral switch domain.

Early Oral Switch

n = 812 (23%)

(includes n = 6 paediatric)

384 Day 7:

201 Continued IV

183 Oral Switch

428 Day 14:

203 Continued IV

225 Oral Switch

Nasal sprays and behavioural interventions compared with usual care for acute respiratory illness in primary care: a randomised, controlled, open-label, parallel-group trial

Paul Little, Jane Vennik, Kate Rumsby, Beth Stuart, Taeko Becque, Michael Moore, Nick Francis, Alastair D Hay, Theo Verheij, Katherine Bradbury, Kate Greenwell, Laura Dennison, Sian Holt, James Denison-Day, Ben Ainsworth, James Raftery, Tammy Thomas, Christopher C Butler, Samantha Richards-Hall, Deb Smith, Hazel Patel, Samantha Williams, Jane Barnett, Karen Middleton, Sascha Miller, Sophie Johnson, Jacqui Nuttall, Fran Webley, Tracey Sach, Lucy Yardley, Adam W A Geraghty

- **WHY**

- Practice-changing
- Paradigm-shifting

- **WHAT/HOW**

- RCT at 332 UK general practices
- 13,799 adults with URTI symptoms and ≥ 1 risk factor for adverse outcomes randomised to
 - Usual care
 - Gel-based nose spray 6x/day
 - Saline nose spray 6x/day
 - iv) Behavioural intervention (website)

	Usual care (n=3451)	Gel-based spray (n=3448)	Saline spray (n=3450)	Behavioural website (n=3450)
Number of days of illness due to self-reported respiratory tract illness in previous 6 months				
n	1626	1587	1613	1422
Median (IQR)	10 (5-16)	7 (4-14)	7 (5-14)	8 (5-15)
Mean (SD)	15.1 (19.2)	12.0 (15.3)	11.8 (14.9)	14.2 (17.9)
Number of days of illness among all participants in previous 6 months				
n	2983	2935	2967	2727
Missing, n (%)	468 (13.6%)	513 (14.9%)	483 (14.0%)	723 (21.0%)
Median (IQR)	3 (0-10)	3 (0-8)	3 (0-8)	2 (0-9)
Mean (SD)	8.2 (16.1)	6.5 (12.8)	6.4 (12.4)	7.4 (14.7)
Adjusted IRR*† (99% CI); p value	1 (ref) (0.76-0.90); p<0.0001	0.82 (0.74-0.88); p<0.0001	0.81 (0.74-0.88); p<0.0001	0.97 (0.89-1.06); p=0.46

IRR=incidence rate ratio. *Adjusted for baseline number of days of respiratory tract infection symptoms and stratum.

†Complete cases analysis; IRR for intervention vs usual care.

Table 2: Primary outcome (total days of illness in previous 6 months)

	Usual care (N=3451)	Gel-based spray (N=3448)	Saline spray (N=3450)	Behavioural website (N=3450)
Days with moderately bad symptoms				
Participants with data available, n	2986	2934	2964	2725
Median (IQR)	0 (0-3)	0 (0-3)	0 (0-3)	0 (0-3)
Mean (SD)	3.0 (7.9)	2.4 (7.0)	2.3 (5.8)	2.6 (6.6)
Adjusted effect estimate* (95% CI); p value	1 (ref) p<0.0001	IRR 0.82 (0.73 to 0.91); p<0.0001	IRR 0.82 (0.74 to 0.92); p<0.0001	IRR 0.89 (0.80 to 0.99); p=0.04

Nasal sprays and behavioural interventions compared with usual care for acute respiratory illness in primary care: a randomised, controlled, open-label, parallel-group trial

Paul Little, Jane Vennik, Kate Rumsby, Beth Stuart, Taeko Becque, Michael Moore, Nick Francis, Alastair D Hay, Theo Verheij, Katherine Bradbury, Kate Greenwell, Laura Dennison, Sian Holt, James Denison-Day, Ben Ainsworth, James Raftery, Tammy Thomas, Christopher C Butler, Samantha Richards-Hall, Deb Smith, Hazel Patel, Samantha Williams, Jane Barnett, Karen Middleton, Sascha Miller, Sophie Johnson, Jacqui Nuttall, Fran Webley, Tracey Sach, Lucy Yardley, Adam W A Geraghty

- **WHY**

- Practice-changing
- Paradigm-shifting

- **IMPLICATIONS**

- Saline-based nasal spray should be routinely recommended for URTI (in addition to rest, simple analgesia etc.)

Oral versus intravenous empirical antibiotics in children and adolescents with uncomplicated bone and joint infections: a nationwide, randomised, controlled, non-inferiority trial in Denmark

Alton Bybeck Nielsen, Mette Holm, Morten S Lindhard, Jonathan P Genthal, Lise Borch, Ulla Hartling, Lisbeth S Schmidt, Maren H Ryttner, Annett H Rasmussen, Mads Damkjær, Grethe Lemke, Jens J H Petersen, Minj Sandsgaard, Jesper Thaarup, Kim Kristensen, Lise H Jensen, Lotte H Hansen, Marie C Laweretz, Martin Gottlieb, Tanja H Horstager, Tatjana Zaharie, Thomas U Hoffmann, Tobias Nygaard, Ulrik S Justesen, Lone G Stensballe, Nadja H Vissing, Paul Blanche, Kjeld Schmiegelow, Ulrik Nygaard

Summary

Background Bone and joint infections (BJIs) are treated with intravenous antibiotics, which are burdensome and costly. No randomised controlled studies have compared if initial oral antibiotics are as effective as intravenous therapy. We aimed to investigate the efficacy and safety of initial oral antibiotics compared with initial intravenous antibiotics followed by oral antibiotics in children and adolescents with uncomplicated BJIs.

Lancet Child & Adolescent Health 2014

Published Online:
July 15, 2014
<https://doi.org/10.1016/j.chab.2014.05.003>

- **WHY**

- Practice-changing

- **WHAT/HOW**

- RCT at 18 Danish paediatric hospitals
 - Children with BJI and <24h of antibiotics were randomised to oral ABs (Augmentin <5 years, Dicloxx>5 years) from day 1 or IV Ceftriaxone for >=3 days until clinical improvement and falling CRP, then oral.
 - Primary endpoint=sequelae after 6 months (assessed blindly – affected mobility or joint function)

	Initial oral antibiotics	Initial intravenous antibiotics	Risk difference (CI*)	$p_{\text{non-inferiority}}$
Primary outcome, clinical sequelae at 6 months				
Main analysis†	0/98	0/84	0 (0·0 to 3·8)	0·012
Per protocol‡	0/81	0/76	0 (0·0 to 4·6)	0·021
Secondary outcomes				
Switch of antibiotics within 28 days due to suspicion of non-acute treatment failure	5/101 (5·0%)	3/91 (3·3%)	1·7% (-5·2 to 8·3)	NA
Recurrent infection within 6 months	0/101	1/91 (1·1%)	-1·1% (-6·2 to 2·7)	NA
Safety outcomes				
Serious complications	0/123	0/125	0 (-3·2 to 3·2)	NA
Surgical intervention after treatment initiation§	12/123 (9·8%)	7/125 (5·6%)	4·2% (-2·7 to 11·5)	NA
Parent-reported adverse events related to antibiotics¶				
One or more¶	58/89 (65·2%)	49/80 (61·2%)	3·9% (-10·9 to 18·5)	NA
Stomach pain	9/89 (10·1%)	6/80 (7·5%)	2·6% (-6·7 to 11·9)	NA
Nausea	10/89 (11·2%)	2/80 (2·5%)	8·7% (0·9 to 17·5)	NA
Frequent stools	15/89 (16·9%)	18/80 (22·5%)	-5·6% (-18·2 to 6·5)	NA
Loose stools	45/89 (50·6%)	33/80 (41·2%)	9·3% (-6·0 to 24·2)	NA
Rash	5/89 (5·6%)	4/80 (5·0%)	0·6% (-7·7 to 8·4)	NA

BJIs=bone and joint infections. NA=not applicable. *CIs were 97·5% (one-sided) for the primary outcome and 95% for secondary and safety outcomes. †The main analysis was assessed in patients with BJIs who had a primary outcome evaluation. ‡The per-protocol analysis was assessed in patients with BJIs who did not switch the initial treatment from oral to intravenous treatment, or from intravenous to oral treatment. §Surgical intervention was primarily assessed in all randomised patients. Among those with BJIs, the proportion of surgical intervention was ten (9·9%) of 101 and seven (7·7%) of 91 (risk difference 2·2%, 95% CI -6·5 to 10·8). The surgical procedures were joint puncture with lavage for seven patients in the oral group and five patients in the intravenous group, including fenestration for four patients in the oral group and three in the intravenous group and draining and debridement of bone abscess for three patients in the oral group and two in the intravenous group. ¶Reported only during the first 7 days of treatment initiation. The denominators were 89 instead of 123 and 80 instead of 125, which reflects that 34 (28%) and 45 (36%) patients or their relatives did not answer the questions about adverse events in the questionnaire.

Table 3: Primary, secondary, and safety outcomes

Nielsen – Oral vs IV Abs for kids with BJIs – Lancet ACH

- WHY
 - Practice-changing
- IMPLICATIONS
 - Lots of cross-over (17% PO→IV and 9% IV→PO)
 - ?Wrong primary endpoint?
 - Complex/difficult BJIs excluded
 - **Key point:** there is no need for any minimum duration of IV antibiotics in kids with BJI
 - BEST trial ongoing in Australia

Tenofovir and Hepatitis B Virus Transmission During Pregnancy A Randomized Clinical Trial

Calvin Q. Pan, MD; Erhei Dai, MD; Zhongfu Mo, MD; Hua Zhang, MD; Thomas Q. Zheng, MD; Yuming Wang, MD;
Yingxia Liu, MD; Tianyan Chen, MD; Suwen Li, MD; Cuili Yang, MD; Jinjuan Wu, MD; Xiuli Chen, MD;
Hualbin Zou, MD; Shanshan Mei, MD; Lin Zhu, MD

- **WHY**
 - Practice-changing
- **WHAT/HOW**
 - Standard MTCT Rx for HBV and a high VL is TDF in the 3rd trimester plus HBIG (and vaccination) at birth, but HBIG unavailable in some LMICs
 - 280 pregnant women with HBV VL>200,000 randomised to TDF from 16/40 and no HBIG or TDF from 28/40 with HBIG at birth

Tenofovir and Hepatitis B Virus Transmission During Pregnancy A Randomized Clinical Trial

Calvin Q. Pan, MD; Erhei Dai, MD; Zhongfu Mo, MD; Hua Zhang, MD; Thomas Q. Zheng, MD; Yuming Wang, MD; Yingxia Liu, MD; Tianyan Chen, MD; Suwen Li, MD; Cuili Yang, MD; Jinjuan Wu, MD; Xiuli Chen, MD; Hualbin Zou, MD; Shanshan Mei, MD; Lin Zhu, MD

Figure 2. Assessment of Outcome Difference Between Groups and Noninferiority

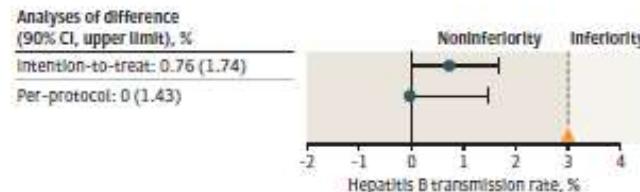


Table 2. Efficacy Outcome Assessments

HBV infection cases	No./total No. (%) [95% CI] ^a		Difference in mother-to-child transmission rates, %		
	Experimental group	Standard care group	Upper limit of 90% CI	Upper limit of post hoc 95% CI	P value
Primary outcome (HBV transmission rates in infants aged 28 wk)					
Analysis of all live-born infants (intention-to-treat analysis) ^b	1/131 (0.76)	0/142	0.76 (1.74)	0.76 (2.23)	
Per-protocol analysis ^c	0/124	0/141	0 (1.43) ^d	0 (2.15) ^d	
Secondary outcomes for mothers					
HBV DNA levels <200 000 IU/mL at delivery	130/131 (99.2) [95.2 to 99.96]	130/138 (94.2) [88.5 to 97.3]	.02 ^e	5.00 (0.1 to 10.0)	
HBeAg negativity at postpartum week 28	3/140 (2.1) [0.6 to 6.6]	3/140 (2.1) [0.6 to 6.6]	>.99	0 (-3.4 to 3.4)	
HBeAg conversion at postpartum week 28	3/140 (2.1) [0.6 to 6.6]	2/140 (1.4) [0.3 to 5.6]	>.99	0.7 (-3.1 to 4.5)	
Postpartum ALT >5 × ULN	5/140 (3.6) [1.3 to 8.6]	6/140 (4.3) [1.8 to 9.5]	.76 ^f	0.7 (-6.0 to 4.6)	
Postpartum ALT >10 × ULN ^g	5/140 (3.6) [1.3 to 8.6]	4/140 (2.9) [0.9 to 7.6]	>.99	0.7 (-4.1 to 5.6)	
Other efficacy outcomes for mothers ^h					
HBV DNA levels <20 000 IU/mL at delivery	124/131 (94.7) [88.9 to 97.6]	91/138 (65.9) [57.3 to 73.7]	.001 ^f	28.8 (19.2 to 38.3)	

Tenofovir and Hepatitis B Virus Transmission During Pregnancy A Randomized Clinical Trial

Calvin Q. Pan, MD; Erhei Dai, MD; Zhongfu Mo, MD; Hua Zhang, MD; Thomas Q. Zheng, MD; Yuming Wang, MD;
Yingxia Liu, MD; Tianyan Chen, MD; Suwen Li, MD; Cuili Yang, MD; Jinjuan Wu, MD; Xiuli Chen, MD;
Hualbin Zou, MD; Shanshan Mei, MD; Lin Zhu, MD

- **WHY**

- Practice-changing

- **IMPLICATIONS**

- In the absence of HBIG, TDF alone is very effective at preventing MTCT of HBV if started early
 - We probably don't actually need HBIG at all in this setting

Preventing New Gram-negative Resistance Through Beta-lactam De-escalation in Hospitalized Patients With Sepsis: A Retrospective Cohort Study

Besu F. Teshome,^{1,2} Taehwan Park,³ Joel Arackal,² Nicholas Hampton,⁴ Marin H. Kollef,⁵ and Scott T. Micek^{1,2}

- **WHY**

- Paradigm-shifting, proof of concept

- **WHAT/HOW**

- Retrospective cohort study including 7742 hospitalised patients at one US hospital with “broad spectrum” beta-lactam use for ≥ 3 days
- “Spectrum” defined using BLSS
- Grouped into: i) De-escalation occurred; ii) No change; or iii) Escalation
- Primary endpoint=isolation of a new resistant Gram negative w/i 60 days

Antibiotic	MSSA	MRSA	Enterococcus	VRE	DRSP	Moraxella, H. flu	E. coli, Klebsiella	ESBL	CRE	Citrobacter, Enterobacter, Serratia	Pseudomonas	MDRO	Anaerobes	B. fragilis	Atypicals	Spectrum Score
Oxacillin	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Dicloxacillin	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Amoxicillin	0	0	1	0	0	0	0.5	0	0	0	0	0	0	0	0	1.5
Ampicillin	0	0	1	0	0	0	0.5	0	0	0	0	0	0	0	0	1.5
Cephalexin	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2
Penicillin	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	2
Aztreonam	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	3
Cefazolin	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	3
Cefdinir	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	3
Ceftazidime	0	0	0	0	0	1	1	0	0	0	1	0	1	0	0	4
Ceftriaxone	1	0	0	0	1	1	1	0	0	0	0	0	1	0	0	5
Amox/clav	1	0	1	0	0	1	1	0	0	0	0	0	1	1	0	6
Pivotal beta-lactam antibiotics																
Amp/sulb	1	0	1	0	0	1	1	0	0	0	0	1	1	1	0	7
Cefepime	1	0	0	0	1	1	1	0	0	1	1	1	0	0	0	7
Ceftaroline	1	1	1	0	1	1	1	0	0	0	0	1	0	0	0	7
Ceftol/tazo	0	0	0	0	0	1	1	1	0	1	1	1	1	1	0	8
Ceftaz/avi	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	8
Pip/tazo	1	0	1	0	0	1	1	0	0	1	1	0	1	1	0	8
Ertapenem	1	0	0	0	1	1	1	1	0	1	0	1	1	1	0	9
Meropenem	1	0	0	0	1	1	1	1	0	1	1	1	1	1	0	10
Mero/vabor	1	0	0	0	1	1	1	1	1	1	1	1	1	1	0	11
Imipenem	1	0	1	0	1	1	1	1	0	1	1	1	1	1	0	11

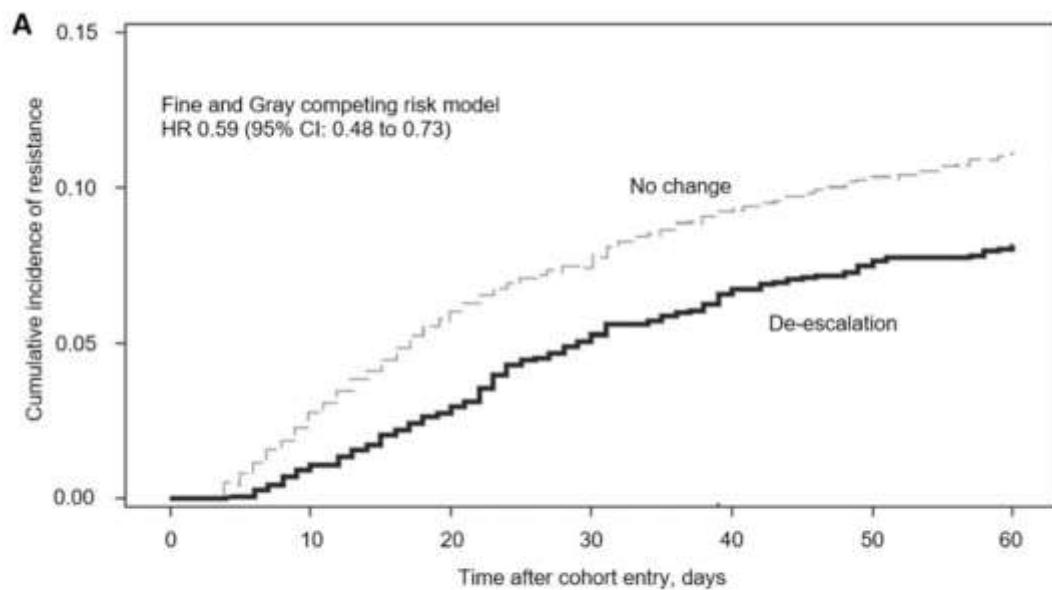

MSSA = methicillin-sensitive *Staphylococcus aureus*, MRSA = methicillin-resistant *Staphylococcus aureus*, VRE = vancomycin-resistant Enterococcus, DRSP = Drug-resistant *Streptococcus pneumoniae*, H. flu = *Haemophilus influenzae*, ESBL = Extended spectrum beta-lactamase, CRE = Carbapenem-resistant Enterobacterale, MDRO = Multidrug-resistant organism, Amox/clav = amoxicillin/clavulanate; Amp/sulb = ampicillin/sulbactam; Ceftol/tazo = ceftolozane/tazobactam; Ceftaz/avi = ceftazidime/avibactam; Pip/tazo = piperacillin/tazobactam; Mero/vabor = Meropenem/vaborbactam

Table 3. Bacterial Pathogens that Developed New Resistance

	Overall (n = 644)	De-escalation (n = 112)	No Change (n = 431)	Escalation (n = 101)
Incidence rate per 1000 person-d (95% CI)	1.85 (1.71–2.00)	1.42 (1.16–1.68)	2.03 (1.84–2.22)	1.80 (1.45–2.15)
Time to new resistance, d, mean \pm SD	23.7 \pm 15.0	26.0 \pm 14.1	22.0 \pm 15.1	28.4 \pm 14.4
Pathogens				
<i>Acinetobacter baumannii</i> complex				
Carbapenem resistant	39 (6.0)	4 (3.6)	29 (6.7)	6 (5.9)
MDR	43 (6.7)	6 (5.4)	30 (7.0)	7 (6.9)
<i>Enterobacteriales</i>				
3rd generation cephalosporin resistance	329 (51.0)	63 (56.3)	229 (53.1)	37 (36.3)
Carbapenem resistant	51 (7.9)	7 (6.3)	36 (8.4)	8 (7.8)
MDR	251 (38.9)	41 (36.6)	175 (40.6)	35 (34.3)
<i>Pseudomonas aeruginosa</i>				
Carbapenem resistant	155 (24.0)	23 (20.5)	92 (21.3)	40 (39.2)
MDR	125 (19.4)	20 (17.9)	72 (16.7)	32 (31.4)
Other MDR non-fermenting GNR	29 (4.5)	7 (6.3)	18 (4.2)	4 (3.9)
Source of isolation ^a				
Blood	94 (14.6)	13 (11.6)	70 (16.2)	11 (10.8)
Respiratory specimen	262 (40.6)	51 (45.5)	160 (37.1)	51 (50.0)
Urine	163 (25.3)	28 (25.0)	111 (25.8)	24 (23.5)
Other	133 (20.6)	22 (19.6)	94 (21.8)	17 (16.7)

Data are presented as number (%).

Abbreviations: GNR, Gram-negative rod; MDR, multidrug resistant.

^aSome pathogens were isolated from multiple sites in the same patient.

Preventing New Gram-negative Resistance Through Beta-lactam De-escalation in Hospitalized Patients With Sepsis: A Retrospective Cohort Study

Besu F. Teshome,^{1,2} Taehwan Park,³ Joel Arackal,² Nicholas Hampton,⁴ Marin H. Kollef,⁵ and Scott T. Micek^{1,2}

- **WHY**

- Paradigm-shifting, proof of concept

- **IMPLICATIONS**

- De-escalating doesn't only make ID physicians feel good – it decreases the emergence/acquisition of resistant Gram negatives

Top 10 Non-COVID ID papers 2024+implications

1. Beghini – *Many “non-communicable” diseases are probably communicable*
2. Bekker – *6 monthly S/C lenacapavir should be standard for PEP if/where affordable*
3. Browne – *Shared hospital equipment should be cleaned daily*
4. Daneman – *7 days antibiotics is enough for nearly all uncomplicated bacteraemias*
5. Dulhunty – *Beta-lactams should be used by continuous infusion in ICU for sepsis*
6. Kaasch – *Early oral switch is probably safe for uncomplicated SAB (more data needed)*
7. Little – *Saline nasal spray should be recommended for all URTIs*
8. Neilsen – *There is no minimum duration of IV ABs for kids with BJI – just use oral*
9. Pan – *HBIG not needed to prevent MTCT of HBV if TDF started early enough*
10. Teshome – *Antibiotic de-escalation has tangible benefits*

High-dose Probiotic Mix of *Lactobacillus* spp., *Bifidobacterium* spp., *Bacillus coagulans*, and *Saccharomyces boulardii* to Prevent Antibiotic-associated Diarrhea in Adults: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial (SPAADA)

Vladimir Hodzhev,^{1,✉} Karen Dzhambazov,^{1,✉} Nikolay Sapundziev,^{2,✉} Milena Encheva,³ Spiridon Todorov,^{4,✉} Vania Youroukova,^{5,✉} Rumen Benchev,⁶ Rosen Nikolov,⁷ Boris Bogov,^{8,✉} Georgi Momekov,⁹ and Veselin Hadjiev^{10,✉}

- **WHY**

- (Potentially) Practice-changing
- Dogma challenging

- **WHAT/HOW**

- 564 adult outpatients from Bulgarian Resp and ENT clinics receiving broad spectrum antibiotics were randomised to 2 probiotic capsules PO daily for the duration of AB treatment plus 14 more days OR placebo.
- Primary outcome=number of participants who had ≥ 1 day of diarrhoea (≥ 3 loose stools/24h)

- 13 selected bacterial strains
- 100 billion CFU per dose (2 capsules)
- Plus "prebiotic blend" of oligosaccharides
- Plus B vitamins
- A\$37 per 14 day course on eBay
- Note trial sponsor was Neopharm Bulgaria but they played no role etc.
- **Author Col statement:** All authors have delivered scientific lectures on a given problem for various pharmaceutical companies, including Neopharm Bulgaria.

Graphical Abstract

High-dose probiotic mix of *Lactobacillus* spp., *Bifidobacterium* spp., *Bacillus coagulans*, and *Saccharomyces boulardii* to prevent antibiotic-associated diarrhea in adults: a multi-center, randomized, double-blind, placebo-controlled trial (SPAADA)

Hodzhev et al., 2024 | *Open Forum Infectious Diseases*

Practical guidelines on the use of probiotics to prevent antibiotic-associated diarrhea (AAD) are sparse. This trial aimed to evaluate the efficacy and safety of a high-dose, multi-strain probiotic mix (Sinquanon®), specially designed for prevention of AAD in adults.

Methods:


Adults in the outpatient setting taking oral broad-spectrum antibiotics for 5 to 10 days received 2 capsules/day of probiotic mix or placebo during antibiotic treatment and 1 capsule/day for 14 days thereafter.

CONTENT PROBIOTIC MIX:

- 13 probiotic bacterial strains of 3 genera
- 1 probiotic yeast strain
- 3 prebiotics
- vitamin-B complex

(total probiotic dose of 50×10^9 CFU/capsule)

GROUP 1: probiotic mix
(282 participants)

GROUP 2: placebo
(273 participants)

Incidence of AAD (%)

9.2%

Severity of AAD (% mild / % moderate)

8.2% / 1.1%

Mean duration of AAD (±standard deviation, days)

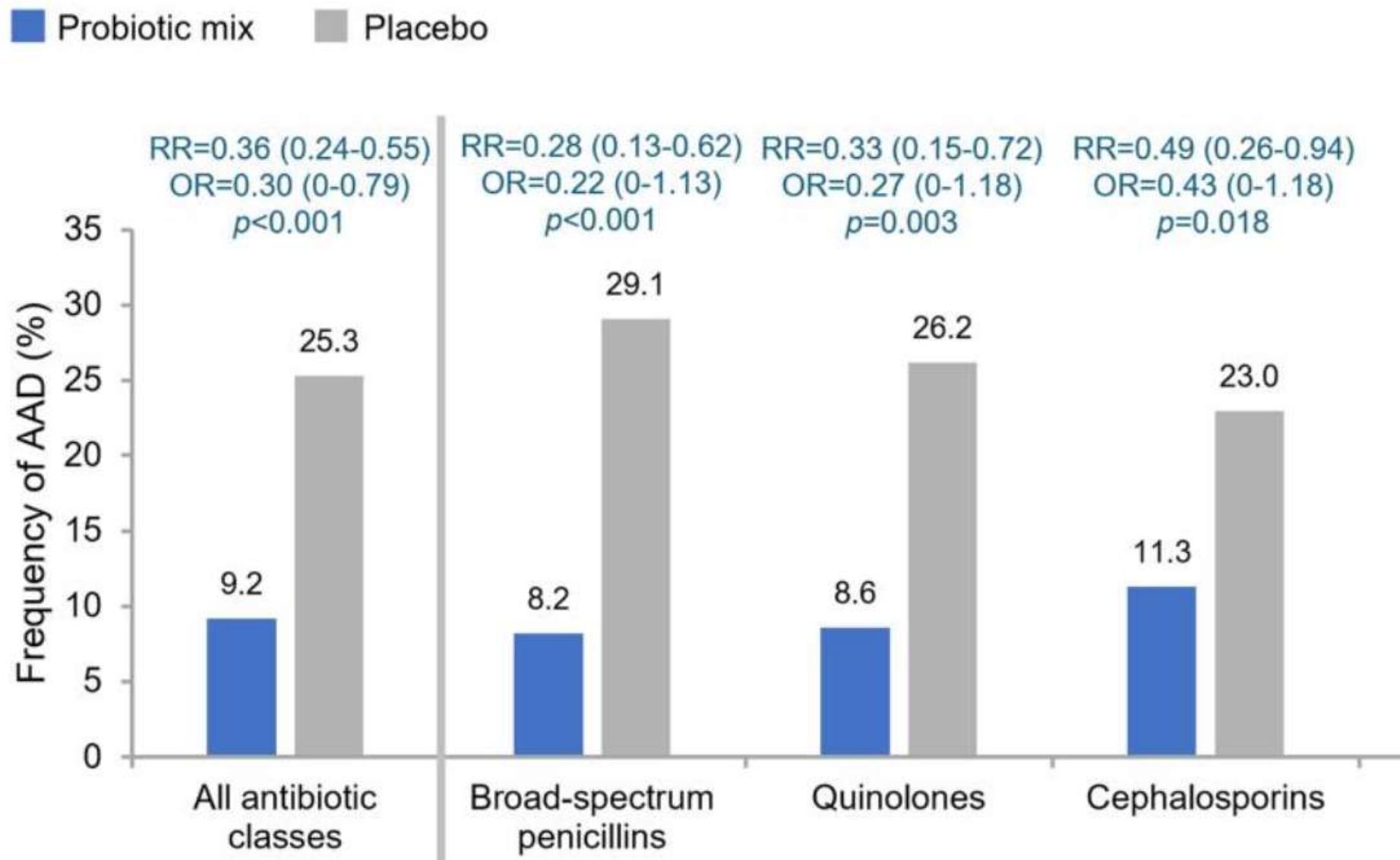
2.6±2.2

25.3%

16.8% / 8.4%

3.7±2.4

Absolute risk reduction=16%


$p<0.001$

Mean difference=-1.12

$p=0.002$ / $p<0.001$

$p=0.04$

CONCLUSION: The specially designed probiotic mix demonstrated to be beneficial compared with placebo in the prevention of AAD in adults who received broad-spectrum antibiotics: AAD occurred significantly less frequently in the studied probiotic mix versus placebo group (9.2% versus 25.3%).

High-dose Probiotic Mix of *Lactobacillus* spp., *Bifidobacterium* spp., *Bacillus coagulans*, and *Saccharomyces boulardii* to Prevent Antibiotic-associated Diarrhea in Adults: A Multicenter, Randomized, Double-blind, Placebo-controlled Trial (SPAADA)

Vladimir Hodzhev,^{1,①} Karen Dzhambazov,^{1,①} Nikolay Sapundziev,^{2,①} Milena Encheva,³ Spiridon Todorov,^{4,①} Vania Youroukova,^{5,①} Rumen Benchev,⁶ Rosen Nikolov,⁷ Boris Bogov,^{8,①} Georgi Momekov,⁹ and Veselin Hadjiev^{10,①}

- **WHY**

- (Potentially) Practice-changing
- Dogma challenging

- **IMPLICATIONS**

- Shifts the needle on probiotics but the jury is still out for me
- Opposes many previous RCTs of other products
- Need to replicate this in an independent trial and in hospital settings

